
DEVELOPING A LOW INTERACTION HONEYPOT DETECTION SYSTEM US-
ING LIVE ENVIRONMENT AND NETWORK ANALYSIS.

by

ALLAN MUHUMUZA MUTABAZI
Reg. No: 2012/HD05/871U

BSc IT (Mak)
Department of Computer Science

School of Computing and Informatics Technology, Makerere University
allanmuh@yahoo.com/+256782172570

A Project Report Submitted to the College of Computing and Informatics Technology
for the Study Leading to a Partial Fulfillment of the Requirements for the Award
of the Degree of Master of Science in Computer Science of Makerere University

Supervisor
Department of Computer Science

School of Computing and Informatics Technology, Makerere University
Dr. Joyce Nakatumba-Nabende jnakatumba@cis.mak.ac.ug

+256-701-726-338, Fax:+256-41-540620

August 2018

Contents

Contents 2
List of Abbreviations . 3
Declaration of Authorship . 4
Abstract . 6
Acknowledgment . 7
Background . 8

1.2 Problem Statement . 9
1.3 Research Objectives . 9
1.4 Scope . 10
1.5 Significance of the Study . 10

LITERATURE REVIEW . 11
2.1 Honeypots . 11
2.2 Virtual Honeypots . 13
2.3 Honeypot Detection . 15
2.4 Conclusion . 18

METHODOLOGY . 19
3.1 Introduction . 19
3.2 Design and Development of Software Application 20
3.3 Application Development . 21
3.4 Application Testing . 23

HONEYPOT DETECTION ALGORITHM 26
PRESENTATION OF RESULTS . 42
FUTURE WORK . 48
REFERENCES . 50
APPENDICES . 52

2

List of Abbreviations

CIM Common Information Model

WMI Windows Management Infrastructure

3

Declaration of Authorship

I, Muhumuza Allan Mutabazi, declare that this document titled, Developing a Low Inter-
action Honeypot Detection System Using Live Environment and Network Analysis, and
the work presented therein are my own and have never been submitted at any academic
institution for an award of any form.

Signature...

Date...

4

07-12-2018

Supervisor Approval

I confirm that the work presented in this document, A Honeypot Detection System Using
Live Environment and Network Analysis is authentic and has been accomplished under
my supervision.

Signature...

Date...

5

07-December-2018

Abstract

As the technological change leads to the use of information systems to store and process
data, the need to protect the systems becomes very important as it can cause to data
leakage, disruption in processing among other things which then lead to financial losses
and endangering of the persons whose information has been leaked. Honey Pots are one
of the ways these information systems can be protected from authorized access through
understanding the motives of the attacker and the methods being used to try access the
systems. With this information collected, the production system can be hardened and
information protected.

This project helped develop a Honeypot detection system that helps the honeypot devel-
opers check the built honeypots and harden them to prevent them from being detected
by the attackers. The honeypot detection tool was tested on windows honeypots that
are currently in use, a production server was used a control environment and the results
showed that honeypots in production can be detected by the hackers.

Honeypots that are not easily detectable are important as they help organizations to
collect lots of data on the methods the attackers are likely to use, and the information
being targeted by the hackers. The loop holes in these areas can then be patched to keep
the information systems safe.

The project also proposes a high level model on how honeypots for windows systems can
be made undetectable and lead to the collection of more information about the attack,
this model can also be replicated in the systems that are being operated by the organi-
zations.

6

Acknowledgment

This thesis would not have been possible without the valuable contribution and guidance
of certain people. First and foremost I offer my sincerest gratitude to my supervisor,
Dr. Joyce Nakatumba Nabende, who has supported me throughout my thesis with her
patience and knowledge. Secondly, I would like to express my gratitude to my employers
during my study time, AH Consulting, EY Uganda and Uganda Revenue Authority for
the knowledge/experience impacted during my time of study, this knowledge/experience
was a valuable input to the course. I am also grateful to family for always supporting
and encouraging me throughout the course duration, this would not be possible without
you.

7

CHAPTER 1

BACKGROUND

This thesis is about developing system to detect low interaction honeypots in a net-
worked environment through analysis of production environments and network analysis.
The thesis uses a combination of system processing properties and network analysis of a
computing environment, this will enable developers to strengthen the characteristics of
low interaction honeypots during development in order to build honeypots that are not
easily detected.

Today organizations are networked and hence rely on servers to provide computing re-
sources and relay information to the different clients accessing the network. This central-
ized control provides gains such as access control of system resources, logging, patching,
scalability and easy system maintenance. They also enable the organization system to
all pick data from one source of truth and hence data integrity of the services they of-
fer. These environments are very critical due to the value of information accessed and
transmitted over the networks.

However these processing environment face risks such as downtime, information leakages,
unauthorized access to the systems and encryption of data by hackers. This is mainly
due to the networks being internet facing. These attacks are usually carried out through
vulnerable networks that are not patched, open ports, insure services and gaining user
access through social engineering. These systems are susceptible to being attacked due
to the demand for information that is being transmitted and stored. According to the
Global Cyber Report 2018, sub Saharan Africa lost about 2.5 billion dollars whereas the
worldwide lost about 600billion dollars in cyber related crimes.

Risks that lead to network attacks can only be reduced but cannot be eliminated com-
pletely but are always defended in different forms. Attacks are being defended by in
the following ways: - Patching of systems, deploying secure configurations, deploying
intelligent firewalls to filter and block malicious traffic, honeypot deployment, and user
education. However these methods of defense face challenges such as zero day malware,
costs of implementations of the defense is very high, need to use configurations that can
be exploited to deliver services on the network. The perfect decoy, they often containing
false information, without providing access to any live data, however if poorly designed
and detected by the hackers, it could act as a source of information about the production
environment which could then facilitate attacks.

A honeypot is a system designed to learn how “black-hats” probe for and exploit weak-
nesses in IT systems. According to Anjari et al ,2011, it can be defined as an information
system resource whose value lies in unauthorised or illicit use of that resource, and it is
used as a decoy, put out on a network as bait to lure attackers [1]. One of the purposes
of a honeypot is to lure the attacker into interacting with into the honeypot in order to
gather information about emerging threats or attack vectors so that the organization’s de-
fences can be updated. New tools can be discovered, attack patterns can be determined,
and the very motives of the attackers can be noted and used to improve and protect the

8

networked environment [2] [3].

Being able to detect honeypots is important to security professionals as it enables them to
improve the honeypots developed in thus future making them undetectable. A honeypot
is basically a system that emulates a weak or venerable system in an effort to try and
attract a potential attacker to try and crack or break the machine while the honeypot is
logging all the activities that occur [1].

This project led to the development of a honeypot detection system that will be used by
honeypot developers to test whether honeypot systems developed can be detected. This
will enable the developers’ tweak and configure honeypot to make them undetectable.

1.2 Problem Statement

Honeypots that are detectable don’t serve the purpose of luring the attackers to the
systems and collecting as much information from them as regards to the information
they need from the system, and the type of attack used. Several honeypot detection
methods have been proposed by the several academicians, however the proposed methods
cover either network analysis or system analysis, and we hence intend to implement both
methods in a single system to be able to detect the honeypots.

The fact that low interaction honeypots do not implement a complete feature set (which
a real system does) and also that emulated environments have a significant software
overhead when multiple virtual machines are running on a single physical machine, we
will use this to find honeypots by checking for real system [4].

The research developed a honeypot detection system that has tools that test the com-
ponents that make honeypots discoverable, this will guide future honeypot developers’
patch up these loopholes hence making honeypots more effective in gathering information
from the attackers.

This research led to the development of a honeypot detection system that will enable
identification of low interaction honeypot systems through identification of virtualization
systems on which they are implemented and techniques such as port scanning, services
review, network analysis service scanning.

1.3 Research Objectives

1.3.1 General Research Objective

The main objective of this research was to develop a system to enable detection of a hon-
eypot in a network environment to help honeypot designers develop stronger honeypots.

1.3.2 Research specific objectives

9

The following were the research objectives of the study.

1. To study attack and defense mechanisms in a networked computing environment
through review of literature

2. To develop and test a tool to detect honeypot systems in a network environment.

1.4 Scope

The honeypot detection system covered virtual honeypots that are currently in use and
will support the the windows operating system.

The developed honeypot detection system was developed and tested on a windows envi-
ronment due to the share of the windows production environment.

1.5 Significance of the Study

• The main significance of the research proposal was to study attack and defense
mechanisms through the review of literature .The study will guide the developers
of honeypots improve on the components that lead to the detection of honeypots
in order to develop undetectable honeypots.

• The research also developed and tested a system to be used in detecting honeypots
through the use network analysis and production analysis review. The implementa-
tion included different tools that led to the detection of ot based on their outputs.

• The research will help the developers of honeypots make improvements that can
make honeypots detectable by the attackers. The honeypot detection tool helps
honeypot developers test honeypots being developed for the identified vulnerabili-
ties, hence leading to the development of honeypots that are undetectable or hard
to detect by the attacker and hence collection of lots of information by the organi-
sations that have deployed the honeypots.

10

CHAPTER 2

LITERATURE REVIEW

This chapter discusses the literature reviewed regarding the development of a honeypot
detection system in a networked environment. It explains what honeypot systems are
and how they are being put in use in networked environments, it also highlights the
different techniques that have been used in honeypot detection by researchers previously
and the structures on which the low interaction honeypots are developed. It contains
three sections which include honeypots, virtual honeypots and honeypot detection;-

2.1 Honeypots

A honeypot [5] is an inveigler environment that is monitored strictly by the network
safeguards. It is used to attract the network attacks by true or simulative network
services. The purpose of using the honeypot is to protect the important object hosts.
Honeypot Systems are decoy servers or systems setup to gather information regarding
an attacker or intruder into your system, it is important to remember that honeypots
do not replace other traditional Internet security systems; they are an additional level or
system [6]. A honeypot works by fooling attackers into believing it is a legitimate system;
they attack the system without knowing that they are being observed covertly. When an
attacker attempts to compromise a honeypot, attack-related information, such as the IP
address of the attacker and the method of attack, are collected. This activity done by
the attacker provides valuable information and analysis on attacking techniques, allowing
system administrators to “trace back” to the source of attack if required.

Honeypots are run to gather information about the motives and tactics of the Blackhat
community targeting different networks [7]. These honeypots do not add direct value to
a specific organization; instead, they are used to research the threats organizations face
and to learn how to better protect against those threats.

The two popular reasons or goals behind setting up a honeypot is learning how intruders
probe and attempt to gain access to your systems he adds that since a record of the
intruder’s activities is kept, you can gain insight into attack methodologies to better
protect your real production systems. The other reason as to gather forensic information
required to aid in the apprehension or prosecution of intruders by law enforcement officials
with the details needed to prosecute [6].

Figure 2.1 shows an example of a honeypot on in a networked environment and potential
locations of honeypot systems which can be on the internal network, the DMZ or on the
internet facing computing environment.

11

Figure 2.1. Structure of a honeypot in a networked environment adapted from SANS [6]

Production Honey Pots

Production honeypots emulate real production systems and have attackers spend time
and resource attacking them as opposed to the production or critical systems and to learn
the way they exploit vulnerabilities in production environment. Production honeypots
mainly emulate specific services and sometimes operating systems to invite attackers.
They can also emulate different backdoors, viruses and trojans to lure the attackers.
For an example to examine attacks on web servers a production honeypot emulating the
Web server and fake services can be deployed [1]. This research will focus on operating
system based production honeypots, we will hence develop a system to find honeypots in
production environments

The concept of production honeypots is to emulate real production systems and have
attackers spend time and resource attacking them as opposed to the production or critical
systems and to learn the way they exploit vulnerabilities in production environment [8].
Production honeypots mainly emulate specific services and sometimes operating systems
to invite attackers. They can also emulate different backdoors, viruses and trojans to
lure the attackers. It is easier to break the honeypot phases into groups and the Bruce
Schneier model is good for understanding the honeypots [10]. He groups the security
issues into several steps, which are prevention, detection and response.

Production honeypots add extensive value to the organization’s detection capability they
are designed for. Often organizations are so overwhelmed with production activity, they
don’t have time and resources to spend through gigabytes of system logs for detecting the
attacks. Even if they happen to surf through all the logs, still it won’t be sufficient for
complete detection because the extensive logs generated by security technologies suffer

12

by false positives and false negatives.

Production honeypots are designed in such a way that either there is no false positive or
very few because all the activities on production honeypots is taken as illegitimate, hence
all the logs are relevant, important and reveal some problem, attack or any attempt made
for the same. They are also at par with the risk of false negatives, when IDS systems
fail to detect a valid attack. It is possible to launch an unknown attack that may not
be detected by other security technologies but honeypots addresses this issue very well
because they always detect any connection made to them via a known or unknown way
by the virtue of system activity, not signatures. A connection made to the production
honeypot, is most likely a malicious activity like probe, scan or attack. If the honeypot
initiates a connection, most likely means the system is successfully compromised. Thus,
due to their elementary design they are best suited for detection. But they can never
replace any technology for detection because they can’t be placed on production systems.

The thesis seeks to support and reinforce these properties by developing a system that
will enable the developers discover any loopholes that may exist in the implementation of
low interaction honeypots which may then be fixed making honeypots detectable, below
main advantages of production honeypots in a networked environment [9]:

• Production honeypots carry lots of tangible and intangible advantages for an or-
ganization. Especially they add some advantages, which no other existing security
technology provides.

• Production honeypots collect small amount of information. Instead of logging 1 GB
of data a day, they log only 1 MB of data. So it becomes much easier to analyze
the data and derive value from it. They are designed to capture any tool, method
or exploit which they have never seen before.

• Information collected by them is of high value and no other technology can match
some of the collected information. The gathered data can be used to learn about
the attack, existing vulnerabilities and the ways intruders use to probe and gain
access to the systems. The gathered data can be provided as legal proofs in the
apprehension and prosecution of intruders.

• They are conceptually smooth, so there are fewer chances of mistakes in configuring
and deploying them. They aid in flexible data gathering and have lots of config-
urable options. They can log data locally, to a central log server, put an alarm
at the time of intrusion, send an e-mail to intrusion response group and can make
entry in the incident database.

2.2 Virtual Honeypots

In low interaction honeypots services are simulated in such a way that they cannot be
exploited to gain complete access of the honeypot [10]. In these types of honeypots

13

there is no operating system for the attackers to interact with [11]. The deployment and
maintenance process of low interaction honeypots is comparatively simple then medium
and high interaction honeypots. Their functionality is very similar to passive IDS as they
do not have any interaction with the attackers. Virtual honeypots can minimize risk
but at the same time their functionality is limited. However they can still be used for
analyzing spammers and can also be used as active countermeasure against worms.

Virtual honeypots contrast with hardware-based honeypots, which are dedicated comput-
ers, networks or network segments designed to serve the same purpose. Virtual honeypots
can be thought of as virtual machines (VMs) which may exist in multiple configurations
on a single computer or appliance to emulate various systems and vulnerabilities [12].
Virtual honeypots are cheaper to deploy and more secure than hardware-based systems.
In some cases, for example, real honeypots have been infiltrated by intruders who were
able to use them to attack the corporate network. However, because a virtual honeypot
is an emulator, it doesn’t function exactly as a real system does and hackers may be able
to pick up on cues that indicate the difference [12]. We will leverage on these positives of
virtualization to create and test the virtual honeypots. As virtual machines are a major
component in the deployment of low interaction honeypots here are the main benefits of
using virtualization [14]:

• A virtualized information technology infrastructure will change the old way of dis-
aster recovery by providing a fast, dependable and low budget disaster recovery
plan through hardware independent, server consolidation and easy test scenarios.
This will support the research proposal as it will enable us setup a test environment
cheaply to support the honeypot detection toll that we will have developed.

• Testing a new software in an OS can cause problems and cause file-system damage.
With virtualization software developers can easily test new software in a virtualized
environment and, if any damage is caused to the system, it is possible to rollback
the system to its original state without any problems.

• Software developers can easily test their products in different OSs with just a few
clicks. Having all OSs up and running in one place is something which software
developers can use to their advantage while saving time. During the testing most
of the test environments were setup in on the virtual environments due to the easy
of setup and will enable the testing of the honeypot detection tool.

• On most servers only one application can run because if an application crashes the
whole system will crash and, if there are any other applications on that server, they
will stop functioning as well. To solve that problem system administrators usually
run each application individually on different servers to minimize system failure.
However, with virtualization, multiple applications can run at once on the virtual
server leading to the savings money and resources.

In conclusion, literature reviewed will guided us in understanding why developers pre-
ferred to build the honeypot on virtual machine and we’ll hence look at the role of
virtualization in the detection of honeypots. We will also check how these properties of
honeypots can help us achieve our goal of honeypot detection in a networked environment.

14

2.3 Honeypot Detection

a) Bot Infection

Honeypots can be detected by through malware infection using bot programs, a computer
is compromised and a bot program is installed, some bot programs will continuously try
to infect other computers in the Internet [15]. In this case, a honeypot must modify or
block the outgoing malicious traffic to prevent infecting others. Based on this liability
constraint imposed on honeypot security professionals, a botmaster could let compromised
computers send malicious infection traffic to her sensors. However they noted that this
honeypot detection technique is difficult for honeypot defenders to deal with. Honeypot
defenders cannot block or even modify the outgoing infection traffic. Without accurate
binary code analysis, honeypot defenders will not be able to know which target IPs belong
to the botmaster’s sensors [15].

b) TCP/IP Stack

Honeypots can be detected by the reviewing the to find inconsistencies in in TCP/IP stack
(remotely detectable), using Tools like hping can be used to detect incorrect TCP/IP
stack emulations indicating the use of a low-interaction honeypot for example the results
would be as follows:- Normal RH9: TTL=64, window=0, id=0, DF for a live operating
system, RH9 on vmware installed operating system: TTL=64, window=0, id=0, DF
and RH9 on honeyd virtual honeypot: TTL=64, window=1460, id=0, DF. This method
works even better on Unix systems emulating Windows and vice versa: Normal Win2k
SP4: TTL=128, window=0, id=+, DF and honeyd emulating Win2k SP4: TTL=64,
window=1460, id=0, DF [16]. This is a strong honeypot detection technique as the
emulated TCP/IP stack can be easily identified and can conclude that the honeypot has
been detected.

c) Network Analysis

Network analysis can be used to detect honeypots. An ideal honeypot will mirror a real
system exactly and is thus difficult to detect but unfortunately existing honeypot tech-
nology is far from ideal. In general there are several high level “features” that honeypots
possess but real production systems do not [4]:

• There should be no network activity on the honeypot

• All interactions with the honeypot are logged extensively

• Bandwidth is often restricted to prevent a compromised honeypot from damaging
other network

• Low interaction honeypots do not implement a full feature set

• Emulated environments have multiple virtual machines running on a single physical
machine or have significant software overhead when compared to real systems.

15

However, network analysis maybe is hard to detect without long term monitoring of the
honeypot’s local network traffic. It is worth noting that the only way to detect an ideal
or “pure” honeypot at the network level is to monitor local traffic and even then there is
a danger for a high false positive rate [4].

Service exercising is used to detect a honeypot by testing or “exercise” the services it
provides. Some environments (especially low interaction honeypots) do not implement
a full feature set and by selecting uncommon features or operations we may be able to
determine if we are working with a legitimate system or a part of the network defenses
[4]. However, some low interaction honeypots may create services that emulate those that
run in a production networked environment, these can be detected by getting the time
stamps of the running services which are usually absent in the low interaction honeypots.

d) Timing Analysis

Timing analysis of ICMP ECHO requests is a detection system builds on a simple ob-
servation that most honeypot software responds slower to ICMP ECHO (ping) requests
compared to non-emulated systems. In effect this doubles the delay from the operating
system. Other delays could be introduced when multiple virtual machines are present on
a single guest operating system and the guest operating system must route packets be-
tween several processes. This is one of the few features that distinguish virtual machines
from real systems [4]. Since most of the honeypot systems are built on virtual systems,
this can be used for the detection of the environment on which the operating systems are
installed which can then lead to the detection of the honeypots. However timing analysis
requires a lot of information to be sent in order to have accurate results.

e) Finger Printing

TCP/IP finger printing: active finger printing is used to collect the data for analysis.
For each of the TCP/IP connection, 49 various quantitative and qualitative features were
extracted [4].

Being able to detect honeypots is important to malicious users as well as security pro-
fessionals. The stealthy-ness of a honeypot is an important factor to consider in an
organization’s overall security strategy but more importantly honeypot developers have
few tools with which to test their products [18]
.

Physical device fingerprinting can also be used to identify virtual honeypots based on the
skews of the devices’ physical clocks. This approach can be used to determine whether
different addresses correspond to virtual hosts on the same physical machine. However,
that approach would not work if the hosts being fingerprinted do not provide timestamps
(e.g., with TCP timestamp option disabled) [19].

f) Pattern Recognition

Virtual honeypots detection using the pattern recognition technique uses classifiers to

16

classify an unknown pattern as belonging to one of several existing patterns, classes,
this is done through comparisons of latency between the honeypot and the production
environment. This framework suggests two phases to accomplish the task which included
(a) off-line training and (b) on-line recognition as shown in figure 2.2 [20].

Figure 2.2 Virtual honeypots based on pattern recognition adapted from [20].

Phase 1 is the procedure for the off-line training phase [20]:

Collect training data from real networks and virtual networks: An attacker applies the
probing traffic to known real networks and virtual networks. They collect the RTT data
samples for both real links and virtual links.

Phase 2 is the procedure for the Preprocess training data

The attacker derives two classes of link latency data sample from the RTT data these
include real link latency sample and virtual link latency sample. From these two classes of
link latency sample, the attacker is able to derive two distributions: real link latency dis-
tribution, and virtual link latency distribution. They use an assumption that the attacker
uses kernel based density estimation approach to derive the distribution numerically.

Phase 3 is the procedure for the selection decision rule

The attacker selects an appropriate classification rule based on the training data and the
two trained link latency distributions. They use an assumption that the attacker uses a
classifier based on the Neyman Pearson theory.

Figure 2.2 (b) is the procedure for the on-line recognition phase. The procedure is similar
to the off-line training phase. An attacker collects a link latency sample from a suspect
network. Then the attacker uses the trained classifier to decide whether the link is real
or is a virtual link.

Honeypots can be detected by vividly simulating the routing topology and services of
a virtual network by tailoring honeyd’s response [10]. GenII honeynets allow a limited
number of packets to be sent out from an infected honeynet. From the botmaster’s
perspective, some hardware or software specific means have always been available to
detect infected honeypots [10].

17

2.4 Conclusion

The literature reviewed was important in helping us understand the works that have been
done in the detection of low interaction honeypots in the IT industry. This knowledge
helped us understand these methods which range from network analysis, measure of
the packets being transmitted, network analysis, virtual machine detection and service
scanning, we will use this knowledge to develop a comprehensive tool that can use some
of the above methods and do a comparison to find out if the system being tested in a
honey pot or not. We also noted the use of bots and spam were common methods in
the detection of honeypots though spam would require user interaction and wouldn’t be
successful in honeypot detection unless the users click links to the honeypot or respond
to mails.

The literature reviewed showed that most of the work previously done focuses on one
component either network analysis or system properties, hence our honeypot detection
system will focus on several components of live environment and network analysis hence
covering both the system properties of the developed system and the transmission aspect
of the environment. The detection of honeypots is very important for the future of hon-
eypot development as it will enable the honeypot developers’ test the developed products
at one go which will lead to the development of honeypots that are undetectable and able
to serve the purpose for which they will have been developed.

18

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter presents detailed discussion about the design process and the methodol-
ogy used to develop the system for the detection of low interaction honeypots that was
proposed for this research. It showed methods used to come up with tools to detect
honeypots using live environment and network analysis. The methodology consisted of
the four steps of the software development lifecycle which included requirement analysis,
design, application development and final testing. Figure 3.0 showed the software devel-
opment cycle which shows the processes that were be used in the implementation of the
research proposal.

Figure 3.1: The software development lifecycle adapted from The Software Life Cycle
Development (SDLC)

It described the different stages of lifecycle development that were applied during the
development of the honey pot detection tool as further explained in the below:-

19

3.2 Design and Development of Software Application

The system was designed using PowerShell and Shell Scripts which are preinstalled on
windows and will run on Linux Operating Systems through the PowerShell for Linux
respectively, these were used to carry out analysis of live production environments and
network analysis, Kali Linux a Debian-based Linux distribution aimed at advanced pen-
etration testing and security auditing was used to deliver the developed tools to the
operating systems that was tested, however the testing was done on the end user side
and not on the delivery to the environment. Kali contains several hundred tools aimed at
various information security tasks, such as Penetration Testing, Forensics and Reverse En-
gineering [23]. The development machine was a Windows 7 machine with VMare installed
that hosted the Windows Development Environment which consisted of the PowerShell
Integrated Scripting Environment (ISE) which was used to develop and test the windows
based scripts. The honeypot detection tool consisted of several modules that enabled the
detection of honeypots on a network such as network traffic analysis, open ports on the
network, running services, running processes, virtual machine detection and hardware
analysis.

PowerShell has grown in the last few years and is still rapidly becoming more popular. The
development of PowerShell has greatly increased during these few years and the ability
to include Linux bash inside it is the reason why it excels more than the other operating
system languages [30]. PowerShell is a scripting language built on .NET framework,
it is object-oriented language which utilizes cmdlets to perform various tasks. These
cmdlets are small programs that can be called directly from the command line or from a
PowerShell script file [31].

PowerShell is prebuilt on the Windows Operating Systems and is being used by system
administrators to manage systems, it’s being seen as a major tool for the future of systems
administration. Hence we will use the PowerShell functionality to develop the honeypot
detection components for the windows operating system. [31]

PowerShell is built on top of Microsoft’s .NET Framework (Windows PowerShell versions
1 – 5) or .NET Core (PowerShell Core, version 6). All output returned by PowerShell
commands consists of .NET Framework objects. A major part of PowerShell’s capa-
bility comes from .NET Framework’s object-oriented approach, it is PowerShell’s main
differentiating point compared to traditional shells. [24]

PowerShell provides a scripting language for creating more programs with various win-
dows functionalities. The scripting language is similar to C# , the .NET programming
language, supporting basic programming language features, designed specifically for a
shell-based environment. Scripting allows combining multiple commands into singular
parameterized scripts or functions, providing features such as conditional execution, loop-
ing, variables and arithmetic operations. [33]

Multiple sequentially executed commands can be placed into a function or script to make
the functionality available by typing a single command. Functions and scripts can be
distributed and executed from script files, which have a .ps1 file extension. Scripts can
be executed by inputting a full file path to the .ps1 file or with the dot sourcing operator

20

“.” (period). When the dot sourcing operator is used, the script is run in the current
PowerShell session scope, making functions defined inside the script available until the
session is closed. [35]

When a script file is executed, its code is run as-is in the current session. The difference
between a script and a function is that functions can remain (with dot sourcing) available
in the interactive session as commands.

Scripts and functions can define parameters to be used as input values similarly to cmdlets
having parameters. Parameters are defined with the same syntax for functions and scripts.
Parameter definitions can be placed in a Param() block. The definitions are similar to
variable definitions, containing the variable name with the $ sign and optionally the
object type in brackets. There are also additional options to control how the parameter
is handled. [34]

PowerShell’s capability can be extended by using modules. Modules enable developers
and software vendors to easily integrate into PowerShell or extend its native capability
by offering customized cmdlets. Related functionalities can be packaged as a module to
be easily shared and installed. Modules consist of code, dependencies and manifest files.
Modules can be divided into two types: script modules and binary modules. Script mod-
ules contain any valid PowerShell code. Binary modules contain compiled code written
in a .NET programming language such as C# . Manifest files can optionally be used to
store related metadata, such as versioning, dependencies and author information. [24]

PowerShell modules can contain scripts or cmdlet definitions, which are made available
either by importing the module manually by using the Import-Module cmdlet or by using
the autoloading feature, which imports modules placed into directories defined in the
PSModulePath environment variable. Whenever a cmdlet in PSModulePath directory
is called, PowerShell automatically loads the module into the session and executes the
requested command. [24]

3.3 Application Development

Using the application development environment setup and configured we will wrote the
algorithm to achieve the objective of being able to detect honey pots. Several tests were
carried out at the unit levels to ensure that the project objective is being achieved, after
the development of each module it was tested to find out if it achieves the desired role.
The system comprises of different tools which are tested individually to make sure they
can achieve the expectations these algorithms are as follows:-

The virtual machine detector checks/tests whether the system being tested is a virtual
machine and which virtual machine has been deployed to host this computing environ-
ment.

The process start reader was developed to check the system and find out which processes
are running and for how long they have been running. This will help the system come
up with results to be reviewed in order to conclude on whether the machine being tested

21

is a honeypot of not after combining it with other features.

The Logins algorithm was also tested to find out how many users has used the system
and when they last accessed the system to help the tool users deduce on whether the
system is a honeypot or a production environment.

We tested for hardware algorithm and network ports active to determine whether they
are hosted on a virtual environment or server box.

Traffic analysis was also done to determine the amount of traffic flow versus the organi-
zation under review.

The port and services scanner was used to scan the given systems for open ports and
running services on the given systems. Given that most honeypot have the default ports
open, was be used to review the open port and was important in deducing on whether
the given system is a honeypot or not.

The high level review of the honeypot detection tool described above is shown in Figure
3.2

Figure 3.2: High-level architectural design for the honeypot detection tool.

All the functionalities described above are were then bundled to create the final system
that will is being used to conclude on whether a system are honeypots or not from
the results returned by the algorithms. The system provides different results that can
be assessed to help conclude on whether the machine under review is a honeypot or a
production system.

22

As part of the application development documentation is done, through the comments
in the code being written and side by side documentation on the functionality of the
program being written.

3.4 Application Testing

After the development of the application, several tests were carried out to find out, if it
serves the purpose of its development using the test cases developed. Both functional and
non-functional testing were carried out on the application. Functional testing included
the testing functional requirements of a program and its components and also covered
how well (if at all) the system executes its functions.

Nonfunctional testing was also done to specifically evaluate the readiness of a system
according to the various criteria which are not covered by functional testing such as
execution time of the program. The test were documented and added the to this report.

The honeypot system was tested in two phases that is individual functionality and inte-
grated functionality. The algorithms developed was bundled to come up with one system
with a presentation layer. The algorithms were tested for functionality before being
integration into on system.

We developed a testing environment that included a Honey drive virtual machine hosting
a Windows 7 virtual honeypot, Windows Production Environment and Windows Virtual
Operating System as shown in figure 3.3

23

Figure 3.3: Testing environment for the honeypot detection tool.

The honeypot testing environment was setup as follows:

This research focused on developing a tool to discover production honeypots, hence we set
up and low interaction honey pot using a honeypot linux distro called honey drive. Honey
drive is a virtual appliance (OVA) with Xubuntu Desktop 12.04.4 LTS edition installed.
It contains over 10 pre-installed and pre-configured honeypot software packages such as
Kippo SSH honeypot, Dionaea and Amun malware honeypots, Honeyd low-interaction
honeypot, Glastopf web honeypot and Wordpot, Conpot SCADA/ICS honeypot, Thug
and PhoneyC honey clients and more. [27]

Additionally it includes many useful pre-configured scripts and utilities to analyze, visu-
alize and process the data it can capture, such as Kippo-Graph, Honeyd-Viz, DionaeaFR,
an ELK stack and much more. Lastly, almost 90 well-known malware analysis, forensics
and network monitoring related tools are also present in the distribution [27].

This was installed as a guest operating system on windows 7 computer using the Oracle
VM VirtualBox. VirtualBox is one of the most popular virtualization solutions for desk-
top computers [28]. Providing a virtualization solution to virtualize the X86 platform,
this popular virtualization technology is now developed by Oracle Corporation. Virtual-
Box can run multiple guest operating systems under the host. Each of these hosts can
pause and resume each guest at will, and is able to take snapshots of each of these guests
for backup purposes [29]. Each of the virtual machines can be configured independently
and can run in either software emulation mode or hardware assisted mode, taking use of
Intels VT-X technology or AMD AMD-V technology. In addition VirtualBox emulates
ethernet network adapters, which enables each guest to connect to the internet through
a NAT interface.
Architecturally VirtualBox uses a kernel module that acts as the hypervisor, on top of
which the VirtualBox API communicates with the hypervisor. From the API the end-
user applications that is the default GUI and the VBoxManage command line tool can
be built. The architecture that VirtualBox then builds upon is then not so different from
what we have seen in other mentioned virtualization suites [29].

Virtual box is light and works well with honey drive, hence the choice of this of the virtu-
alization software. This infrastructure will enable us exploit a one-to-many relationship
between hardware and end-user respectively in order to obtain the economic benefits of
large-scale resource sharing since it is open source [30]. The Honey Drive enabled us
set put both the Linux and Windows honeypot on the same system virtual machine and
operating systems for testing of the developed system for detecting honeypots.

The developed tool was then be used on the testing environment to come up with con-
clusions on the virtual honeypot and virtual machine to find out if the objective of the
research proposal has been achieved. Figure 3.4 shows the high level testing architecture
for the testing of the honeypot detection system developed.

24

Figure 3.4: High-level architectural design for the honeypot detection tool testing.

25

CHAPTER 4:

HONEYPOT DETECTION ALGORITHM

An algorithm was designed to aid in the detection of honeypot systems, this chapter
explains how the designs of the algorithm.

The honeypot detection algorithm was designed based on weaknesses in the current hon-
eypot systems that makes them detectable in today’s production environment, the algo-
rithm focuses on areas whose results can help identify where a system is a honeypot or
not, these include Virtual Machine Detection, Login Details, Status of the Ports, Screen
Capture, Installed Programs, Processes and services, Logins, Hardware Properties and
Active Network Connections.

The section below explains the implementation of the Honeypot Detection Algorithm
breaking down the various components that make up the tool and the data flow.It is
explains the functionality of the algorithm designed using a series of flowcharts and later
illustrates the functionality and output of the different algorithms when run on a system.

1) Virtual Machine Detection

Figure 4.1 Flow Chart of the Virtual Machine Detection and Login Detail Algorithm

26

Virtual Machine detection algorithm was developed due to the fact that most of the
honey pot in the production environment run on virtual environments and hence
finding out if a machine is running on a virtual environment or not would be the
first step in the detection of a honey pot machine. Hardware is expensive and
hence most organizations are not able to spend resources in acquisition of hardware
for honeypots and hence end up hosting them on Virtual Machines. Some virtual
machine environment are free and if found as the host of the environment probability
of the machine being a honeypot increases, these include Windows Virtual PC and
Virtual Box.
As shown in figure 4.1, when launched the virtual machine tool uses Windows
Management Instrumentation (WMI), which is a set of specifications from Microsoft
for consolidating the management of devices and applications in a network from
Windows computing systems, it then uses the WMI-Object property and filter out
the properties which include the Manufacturer, Model, Computer Name, Current
Time Zone, Primary Owner Name, Workgroup and the Domain. These are the
results that are presented to the users before the program exits.
This make the virtual machine detection an important component of the honey pot
detection system, it cannot determine whether the host is a honey pot or not and
hence the other tools in the the honeypot system need to in the evaluation to come
up with a correct conclusion.
The figure below shows how the algorithm works when launched.

Figure 4.2 - Honey Pot Detection Tool
The tool displays the manufacturer and model of the operating system being probed,
if hosted on a virtual environment, it displays the virtual environment software that
the operating system is hosted on. Figure 4.3 below show the results from the honey
pot detection tool.

27

Figure 4.3 – Results from the Honey Pot Detection Tool

2) Login Details
The Login Details algorithm enables display of information that regards the number
of user’s accounts that have logged in and the number of times operating system
has been logged into, this information is extracted for the security log and filters
out the logs with the label 4646 which is the record for logging into the operating
system events as shown in figure 4.1. Production servers usually have very few
logins as they are not used for daily use whereas the honey pots are likely to have
been logged in several times by different users due to their ease of access.
Figure 4 below shows the display of the Login Details Algorithm launched from the
honey pot detection system.

Figure 4.4 - Login Details Algorithm when launched

28

The Login Details algorithm also displays whether the operating system is connected
on a domain or is part of a workgroup. Today organizations mainly operate their
networked servers using domains since they are supposed to provide services to other
workstations in the organization, hence organization servers would be expected to
have the operating system connected to a domain and not a workgroup. Figure 4.5
below shows the sample results from the Login Details algorithm.
Figure 4.5 - Login Details algorithm results

3) Status of the Ports

Figure 4.6

Flow Chart of the Port Status and Screen Capture Algorithm

The Status of the Ports tool displays information of the ports that are open on
the operating system that is being probed. As shown in the Figure 4.6 above, the
algorithm scans the top 1000 ports on the computer system to find out if the ports
are open or closed. Particular ports have different functionalities in the operating
environments for example oracle databases run on port 1521 whereas the SQL

29

Databases run on port 1433. So through the review of the open and closed ports
one is able to tell the services that are running on a particular operating system. If
the service being portrayed by the server is not present among the open ports then
there is a high likelihood that the host is a honeypot.
Figure 4.7 below the Status of the Ports algorithm presented on the menu of the
Honey Pot Detection System.

Figure 4.7 - Status of the Ports Algorithm when run
The tool returns the host IP, the live status, open ports, closed ports and the filtered
ports. Filtered ports are common in production systems as used to give services to
only preselected computing systems on a given network.

Figure 4.8- Status of the Ports Sample Results

4) Screenshot Capture Algorithm

The Screenshot Capture algorithm is used to capture the screenshots of the current
activity on the on the operating system that is being interrogated. The screen
capture algorithm requires a time for capture to be set and the location to store
captured images as shown in the figure 4.6, it then captures the computer screen
and saves the images to the provided location.

Little or no activity is expected on the processing server, as server management
is carried or some configurations updated once in a while and not daily. Similarly
honeypot system are meant to have little or no activity however they are easy to
hack into which may lead to a lot of activity especially relating to querying what

30

operating system and programs are running, hence it is likely to be a honeypot
system. Figure 4.9 below the Screen Capture Algorithm when running.

Figure 4.9 Screen Capture Algorithm when running

It captures screen shots at set time and interval and saves them to a defined location
for review. This is to help review the amount of activity on the server to help identify
if it’s a honeypot or a production environment. Below is the sample results from
the Screen Capture Algorithm

Figure 4.10 Sample Results from the Screen Capture algorithm.

5) Installed Programs

31

Figure 4.11

Flow Chart of the Installed Programs

The Installed Programs algorithm extracts from the registry a list of programs
that are installed on the operating system. The installed programs are stored
in the registry under the H_KEY_MACHINE, so the algorithm requests for the
information from the registry and filters out the properties and only presents the
Display Name, Version, Publisher Install date and Comments as shown in the flow
chart in 4.11 above. The production servers always run particular programs that
are related to the service that is being offered by the given server, however these
applications are not installed on honeypots due to the expenses that come with
licensing of the applications. This leads to honey pots not having any or having
demonstration versions of the production software or none. Figure 4.12 below the
Installed Programs algorithm being run.

32

Installed Programs shows the installed program, the version of the program, Pub-
lisher of the Program and the date of installation of the given software. Below is a
sample result from the Installed Programs algorithm.

Figure 4.13 - Program Installed Algorithm

33

6) Processes and Services

Figure 4.14

Flow Chart of Processes and Services Algorithms

34

The Processes and Services algorithm is meant to provide the running processes
and services on the operating system that is being probed. Processes are managed
using the WMI for windows. The algorithm hence queries the WMI for processes
that are running on the computer system and computes the running time which is
then converted to DDHHMMSS and presents them with the CPU usage and start
date, as shown in the flow chart in figure 4.15. For the running services it still
queries the WMI for the process but uses different filters to display results for each
algorithm.

Production environments always have services and processes running in order to
provide services to the other workstations on the network. Figure 4.16 below shows
the Processes and Services on running the algorithm.

Figure 4.16 Processes and Services Algorithm

The Processes and functions is sub divided into three components which include
Running Processes and Start Times, Running Services Summary and Running Ser-
vice with Details. Figure 4.16 below shows the output from the selection of the
Processes and Services Algorithm shown above.

Figure 4.17 Output from the Processes and Services Algorithm

The Running Processes algorithm provides details of the Name of the process, Total
Processor Time showing for how long a particular process has been running, CPU

35

showing the usage of the different processes and StartTime showing the time the
process started running. Figure 4.17 below shows the output from the running
processes algorithm.

Figure 4.17 Running Processes

The Running Services Summary algorithm provides the status of the running ser-
vices and the Name of the Services. This is meant to help point out particular
services operating services, for example the oracle or SQL services on a database
that provides Database Services. Figure 4.18 below shows the output from the
running processes algorithm.

Figure 4.18 Running Services Algorithm Sample output

Running Services Details Provides and the status of the services that are running
and if the services can be stopped by the user or not. Figure 4.19 Show the output
of the running services details.

36

Figure 4.19 Running Services Details Sample output

37

7) Logins

Figure 4.20 Flow Chart of the Login Algorithm

38

Logins provides information on server up-time or for how long the server has been running,
server restarts or number of times the restart command has been issued to the server, number
of time and when the shutdown command was given to the servers and User Accounts that are
used to log onto the server. It uses the event log to filter out information and later classification
to present the Server shutdowns and server restarts. It then interacts with WMI to find out for
how long the system has been running and the user accounts on the given computer system.

Honeypot machines are not usually protected from the power fluctuation and power loss and
hence can always be turned off inconsistent power. Figure 4.21 shows the Logins Menu on the
Honeypot detection system.

Figure 4.21 Logins Menu

Servers are not supposed to be restarted often as that would lead to downtime which directly
affects the services being provide to the users. Hence review of the uptime, restarts and shutdown
would help review the system up uptime. If it’s being restarted or shutdown often then it’s highly
likely to be a honeypot. Figure 4.22 show the Boot up detail menu which is the stems from the
Login Menu Algorithm

Figure 4.22 Boot up Details Algorithm Results

39

The server-up time algorithm queries the system to puck out for how long this system has been
running, since servers are not always powered on and off and rarely face power failure challenges,
the server uptime should be up to about 3 months and not a few days or weeks. Hence if a
server has been up for about 3 months there are high chances that the server is not a honeypot.
Figure 4.23 below shows the sample output for the server uptime algorithm.

Figure 4.23 Server-up time algorithm

The server restarts algorithm queries the operating system to find the times the server has been
restarted including the date and time of the server restart. If the server is often restarted there
is a high probability of being a honey pot as production servers are not restarted often. Figure
4.24 below shows the sample output of the server restart algorithm.

Figure 4.24 Server Restarts Algorithm Results

The shutdown command algorithm queries the operating system to find out the different times
the shutdown command has been issued to the system. Production servers are rarely shut down
and hence if the system is being shut down often then it may be a honey pot and not a production
system. Figure 4.25 below shows a sample output from the shutdown command algorithm.

Figure 4.25 Shut Down Command Algorithm Results

The user accounts algorithm displays the accounts that are able to log into the particular system.
If the computer is connected a domain, it pulls all the user names on the domain as they could
be used to log into the given server with different user roles. It shows the Users Names, Status(if
log on is possible), and the possible connection. If the system is expected to be on a domain

40

then a couple of users should be displayed, else the computer could be a honeypot. Figure 4.26
below show the sample output for the user account algorithm.

Figure 4.26 User Accounts Algorithm Results

41

CHAPTER 5:

PRESENTATION OF RESULTS

This chapter presents and analyses the results from the functionality testing of the honeypot
detection system.

The honeypot detection system was tested on various environments, these included;

1) Honey Drive which is a Linux distro that emulates both Linux and windows production
environments.

2) Windows Virtual Machine which emulates a honeypot that is deployed as a redundant
computer with no applications and simple configurations on a network to attract attackers.

3) A windows Workstation that is used to carry out day-to-day activities in an organiza-
tion, this is to be used to eliminate production workstations from being confused with
production servers.

4) Windows Production server which is used as a control to show the server setting and what
honeypots should be configured to emulate.

The test results are shown in the tables below.

1) Virtual Machine Test

Table 5.1 Virtual Machine Test Results

Hosted on a Virtual Ma-
chine

Appendices

Honey Drive(Virtual Honey-
pot)

N/A

Windows Virtual Machine Yes Appendix 1
Windows Workstation No Appendix 2
Production Server Yes Appendix 3

The table above shows the results from the virtual machine check, the test was not ap-
plicable to the Honey Drive as it doesn’t support the running of PowerShell scripts which
would lead to a deduction that the computer is a honeypot. The results also indicated
that the Windows Virtual Machine and the Production Server were both hosted a virtual
machine whereas the Windows workstation was hosted on hardware. The test has to be
supported by other tests in order to confirm if the computer is a honeypot.

2) Running Services

Table 5.2 Running Services

42

Number
of services
Running

Database Ser-
vices

Applications Appendices

Honey
Drive(Virtual
Honeypot)

N/A N/A N/A

Windows Vir-
tual Machine

65 No No Appendix 4

Windows Work-
station

115 No Yes Appendix 5

Production
Server

69 Yes No Appendix 6

The results indicated that the test was not able to run on the Honey Drive honeypot due
to the inability to the PowerShell programs hence we rightly concluded that is a honeypot.
The results also indicated that the windows virtual machine was running 65 services but
didn’t include any application or database services, this creates a high like hood that
it’s a honeypot as it is unable to provide services to any other systems on the network.
The results also indicated that the Windows WorkStation had 115 services running, with
no database service but application services which means that it is used for day to day
activities and hence is not a server that hold organizational critical information. The
production server had 69 services running with no daily use applications running but with
a running database. This test confirms that computers with no applications will be used
as honeypots due to the costs involved in licensing the proprietary software used to run
organizations.

3) Running Processes

Table 5.3 - Running Processes

Running Pro-
cesses

Database Pro-
cesses

Applications Appendices

Honey
Drive(Virtual
Honeypot)

N/A N/A N/A

Windows Vir-
tual Machine

Yes No No Appendix 7

Windows Work-
station

Yes No Yes Appendix 8

Production
Server

Not Tested Not Tested Not Tested

The results indicated that the test was not able to run on the Honey Drive honeypot due
to the inability to the PowerShell programs hence we rightly concluded that is a honeypot.

43

The results also indicated that the Windows Virtual Machine had running processes but
no database processes but contained application processes. The test was not done on the
production server not to expose the server processes. The tests however showed that the
windows Workstation is used for daily work whereas the Windows Virtual Machine is not
a server as no application or database process are running.

4) Open Ports

Table 5.4 - Open Ports

Open Ports Database Ports Applications
Ports

Appendices

Honey
Drive(Virtual
Honeypot)

N/A N/A N/A

Windows Vir-
tual Machine

Yes No No Appendix 9

Windows Work-
station

Yes No No Appendix 10

Production
Server

Yes Yes Yes Appendix 11

The results indicated that the test was not able to run on the Honey Drive honeypot due
to the inability to the PowerShell programs hence we rightly concluded that is a honeypot.
The results showed that the rest of the computer systems all had open ports however only
the production serve had open ports that deliver database and application services, this is
an indication that both the workstation and virtual machine are not used as production
servers.

5) Hardware Properties

Table 5.5 Hardware Properties

44

Hard
Drive
Capac-
ity

Free
Space

RAM Processor Appendices

Honey
Drive(Virtual
Honeypot)

N/A N/A N/A

Windows Vir-
tual Machine

60 GB 45.5 GB 2GB Core i7 Appendix
12

Windows
Workstation

463.2
GB

33.2 GB 35GB Core i7 Appendix
13

Production
Server

399 196 GB 25 GB 3 Intel Xeox Appendix
14

The results indicated that the test was not able to run on the Honey Drive honeypot due
to the inability to the PowerShell programs hence we rightly concluded that is a honeypot.
The results also showed that the Windows Virtual Machine had 60 GB of hard disk space
and 2GB RAM unlike the server and work station that had 463.2 and 399 GB with 35GB
and 25GB of RAM respectively. The results also indicated that the processors being used
were core i7 for both windows virtual machine and the workstation whereas the production
server was using 3 Intel Xeox processors. From the analysis the production server shows
processing capability and room for data growth with the free disk space indicating that
the other two are not production servers.

6) Boot-Up Details

Table 5.6 Boot-Up Details

Server-
Uptime
(Days)

Hours Shut Downs Appendices

Honey
Drive(Virtual
Honeypot)

N/A N/A N/A

Windows Vir-
tual Machine

11 12 11 between March
and June

Appendix 15

Windows Work-
station

3 9 Not Tested Appendix 16

Production
Server

165 13 Not Tested Appendix 17

The results indicated that the test was not able to run on the Honey Drive honeypot due

45

to the inability to the PowerShell programs hence we rightly concluded that is a honeypot.
The results also indicate that the virtual machine has be running for 11 days and 12 hours
whereas the Windows workstation is been running for 3 days and 9 hours, they also show
that the server has been running for the longest time which is 165 days and 13 hours.
From these results we are able to tell that the virtual machine and the work station are
not server as servers have to keep running to provide services.

7) Login Details

Table 5.7 - Login Details

Number of Logins users Appendices
Honey Drive(Virtual
Honeypot)

N/A N/A

Windows Virtual Ma-
chine

24 1 Appendix 18

Windows Workstation Not Tested Not Tested N/A
Production Server Not Tested Not Tested N/A

The results indicated that the test was not able to run on the Honey Drive honeypot due
to the inability to the PowerShell programs hence we rightly concluded that is a honeypot.
The results from the Windows Virtual Machine indicated that there were 24 logins and
only one user can log into the machine. The User functions display all the users that
can log into the system, if the system is connected to the domain it shows all the users
with potential to log onto the network, hence if only one person is able to log onto that
network the computer is a honeypot. The system was not tested on the production server
and workstation as results can be used to interrupt production on the server.

8) Screenshot Captures

Table 5.8 - Screenshot Capture

Screen Activity Appendices
Honey Drive(Virtual Honey-
pot)

N/A

Windows Virtual Machine Nil Appendix 19
Windows Workstation Busy Appendix 20
Production Server Nil Appendix 21

46

The results indicated that the test was not able to run on the Honey Drive honeypot due to the
inability to the PowerShell programs hence we rightly concluded that is a honeypot. The results
from the Windows Virtual Machine and the production server show that there is no activity on
the on the screens of the system. Hence if there is no desktop activity there is need to review
the other tools to ascertain where the environment is a honeypot or not. The result shows that
there is activity on the windows workstation as it is used for carry out work on a daily basis.

With the different tools shown above the tool was able to find to systems that were
honeypots, however more than one test has to be carried out to ascertain whether a
system is a honeypot or a production server. The production server acted as a control
to should what the production environment is like, for a honeypot to be undetectable it
should be able to emulate the server as shown in the results above.

47

CHAPTER 6

FUTURE WORK

As digitization and use of systems takes over most roles that were being done manually,
the need to protect organization assets grows. Effective honeypot system are hence
very important in understanding the hacking methods being used to access the different
systems in order to enhance the protection in the areas that are being attacked.
We propose one of the ways honeypots can be made undetected is by editing the files where
the PowerShell commands pick particular information when requested. For example
information about the Common Information Model (CIM) is stores information about
the different windows components including the behavior of managed resources such as
storage, network, or software components in the CIMWin32.dll file. We propose that
systems built as honeypots should have their .

dll

files that affect the results edited to help cater for specifications that fit the server pro-
cessing environment whenever probed.

This proposed module is illustrated in the figures below. Figure A illustrates a simplified
version of the workings of the current PowerShell system in the honey pot systems.
The requests are made on the PowerShell interface and sent to the CIMWin32.dll which
then sends the requests to the computer base files. The computer base file contain
information about the computer properties such as the motherboard, hard disk storage,
the installed processors and RAM. This information is sent back the PowerShell through
the CIMWin32.dll and presented to the receiver.

This paper presents the design and development of a honeypot detection system to help
honeypot developers develop honey pots that cannot be detected by hackers hence en-
abling the honeypot implementers to collect a lot of information about possible attacks
and the tactics being used by the potential hackers to attack the system and help improve
the protection of the systems.
From the tests carried out using the honeypot detection system we were able to note that
all the honeypots in the current production environments can be detected using system
analysis and network traffic, this hinders the effective operation of honeypots as they may
not collect the important information they are meant to collect.
We hence recommend that future honeypot be built and tested with the honeypot de-
tection system before being connected onto the networks in order to collect a lot of
information from the attacker.

48

We further recommend that future honeypot harness the power of the PowerShell pro-
graming language to build scripts that can present desired results to the attackers by
creating results that mirror server results when probed.

Figure 6.1 PowerShell Information Flow

The proposed model seeks the replacement of where information source from being the
computer base file to a honey pot script designed to emulate a production server.

Figure B below shows the simplified proposed design, the information request flows as
the one in figure A, however the information pick up is change to a script that emulates
the actual system production system and can be edited to fit server specifications.

Figure 6.2 Simplified proposed design

49

REFERENCES

[1] L. Spitzner, HoneyPots, Boston: Addison-Wesley, 2002.

[2] "Honeynets: The Honeynet Project’s Know Your Enemy Series," Konw Your
Enemy, 2005.

[3] "Monitoring hacker activity with a honeynet," International Journal of Network
Management, vol. 15, no. 2, pp. 123 - 134, 2005.

[4] M. S, Y. K, B. R, S. K. M and S. H. A, "Detection of Virtual Environments and
Low Interaction Honeypots," New Mexico.

[5] L. Jiangzhou and H. Bin, "An active network defense policy-honeypot and its
technologies," Computer knowledge and technology, no. 9, 2007.

[6] L. R. Even, "What is a Honeypot," SANS, 12 July 2000. [Online]. Available:
https://www.sans.org/security-resources/idfaq/what-is-a-honeypot/1/9. [Ac-
cessed 04 October 2016].

[7] E. Nissan, Computer Applications for Handling Legal Evidence, Police, Springer,
2012.

[8] A. Verma, "Production Honeypots: An Organization’s view," 23 October
2003. [Online]. Available: https://www.giac.org/paper/gsec/3585/production-
honeypots-organizations-view/105831. [Accessed 03 October 2016].

[9] L. Spitzner, "Honeypots – Tracking Hackers," Addison-Wesley, 2002.

[10] P. N, "A virtual honeypot framework," in Proceedings of the 13th USENIX Secu-
rity Symposium, 2004.

[11] R. Baumann and C. Plattner, "White Paper: Honeypots," Swiss Federal Institute
of Technology: Zurich, 2002.

[12] I. Wigmore, Techtarget, September 2014. [Online]. Available:
http://whatis.techtarget.com/definition/virtual-honeypot. [Accessed 3 Oc-
tober 2016].

[13] Archana and N. Gandhi, "Different Ways to Define Virtualization," International
Journal of Advanced Research in Computer Science and Software Engineering,
vol. 5, no. 9, pp. 331- 334, 2015.

[14] A. A. Masjedi, "Virtualization Programs," Auckland, 2012.

[15] W. Ping, W. Lei , C. Ryan and Z. C. Cliff , "Honeypot Detection in Advanced
Botnet Attacks," Information and Computer Security, 2008.

[16] P. Krisztian and W. Sebastian , "Honeypot forensics," in Risk Advisory Services,
Berlin, 2004.

[17] S. Anjali and R. C. Josh, Anti HoneyPot Technology, CRC Press, 2011.

continued on next page

50

continued from previous page

[18] D. Wanda and D. Nina , "A Honeypot Detection Method Based on Characteristic
Analysis and Environment Detection," 2012, pp. 201-206.

[19] A. B. k. c. Tadayoshi Kohno, "Remote physical device fingerprinting," San Diego.

[20] X. Fu, W. Yu, D. Cheng, X. Tan, K. Streff and S. Graham, "On Recognizing
Virtual Honeypots and Countermeasures," 2006.

[21] N. Krawetz, "Anti-honeypot technology," IEEE Security & Privacy Magazine,
2004.

[22] O. Hayatle, A. Youssef and H. Otrok, "Dempster-Shafer Evidence Combining
for (Anti)-Honeypot Technologies," Electrical and Computer Engineering Depart-
ment, Abu Dhabi.

[23] "Kali Linux Documentation," Offensive Security, [Online]. Available:
http://docs.kali.org/introduction/what-is-kali-linux. [Accessed 05 October 2016].

[24] Microsoft, "Understanding a Windows PowerShell Module.," Microsoft, [Online].
Available: https://msdn.microsoft.com/en-us/library/dd878324(v=vs.85).aspx.
[Accessed 29 01 2018].

[25] "NMAP," NMAP.ORG, [Online]. Available: www.nmap.org. [Accessed 05 Octo-
ber 2016].

[26] "KALI TOOLS," Offensive Security, [Online]. Available:
http://tools.kali.org/tools-listing. [Accessed 05 October 2016].

[28] J. Gray, "Readers choice awards 2010," February 2010. [Online]. Available:
http://www.linuxjournal.com/content/readers-choice-awards-2010. [Accessed 03
October 2016].

[29] M. Jan and O. Granberg , "Open-source virtualization," OSLO, 2013.

[30] G. Wang and T. S. Eugene, "The Impact of Virtualization on Network Perfor-
mance of Amazon EC2 Data Center.," in Proceedings of the 29th Conference on
Information Communications, NJ, USA, 2010.

[31] "Microsoft TechNet," Microsoft, 1 November 2013. [Online]. Available:
https://technet.microsoft.com/en-us/library/dn383626(v=ws.11).aspx. [Ac-
cessed 04 October 2016].

[32] "Red Hat Enterprise Linux Operating System Requirements," Redhat Com-
munity, [Online]. Available: https://access.redhat.com/documentation/en-
US/Red_Hat_Directory_Server/8.2/html/Installation_Guide/Installation_Guide-
RHEL-Requirements.html. [Accessed 4 October 2016].

[33] Microsoft, "PowerShell Overview.," Microsoft, [Online]. Available:
https://docs.microsoft.com/en-sg/powershell/scripting/powershellscripting.
[Accessed 29 01 2018].

51

APPENDICES

APPENDIX 1

Appendix 1 Virtual Machine Test Results Windows Virtual Machine

Appendix 2 Virtual Machine Test Results Windows Work Station

Appendix 3 Virtual Machine Test Results Productions Server

52

Appendix 4 Running Services Windows VM

53

Appendix 5 Running Services Windows Workstation

54

Appendix 6 Running Services Production Server

Appendix 7 Running Processes Windows VM

55

Appendix 8 Running Processes Windows Workstation

56

Appendix 9 Open Ports Windows VM

57

Appendix 10 Windows Workstation

58

Appendix 11 Open Ports Production Server

Appendix 12 Hardware Properties Windows Virtual Machine

59

Appendix 13 Hardware Properties Windows Workstation

Appendix 14 Hardware Properties Production Server

Appendix 15 Boot-Up Details Windows Virtual Machine

Appendix 16 Boot-Up Details Windows Workstation

60

Appendix 17 Boot-Up Details Productions Server

Appendix 18 Login Details Windows Virtual Machine

Appendix 19 Screenshot Capture Windows Virtual Machine

61

Appendix 20 Screenshot Capture Windows workstation

Appendix 21 Screenshot Capture Production Server

62

	Contents
	List of Abbreviations
	Declaration of Authorship
	Abstract
	Acknowledgment
	Background
	1.2 Problem Statement
	1.3 Research Objectives
	1.4 Scope
	1.5 Significance of the Study

	LITERATURE REVIEW
	2.1 Honeypots
	2.2 Virtual Honeypots
	2.3 Honeypot Detection
	2.4 Conclusion

	METHODOLOGY
	3.1 Introduction
	3.2 Design and Development of Software Application
	3.3 Application Development
	3.4 Application Testing

	HONEYPOT DETECTION ALGORITHM
	PRESENTATION OF RESULTS
	FUTURE WORK
	REFERENCES
	APPENDICES

