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Abstract 

Landslides continue to occur in the Elgon region despite interventions such as tree planting 

initiatives aimed at restraining them. The current study explored the efficacy of landslide model 

hybridization, tree-landslide relationship and selected mechanical properties of tree roots on slope 

stability with a keen focus on root tensile strength, soil shear strength, and index of root binding. 

A hybrid model comprising of frequency ratio, index of entropy and weighted overlay 

characterized landslide risk and its performance was evaluated using the Receiver Operator 

Characteristics curve. A standard deviation ellipse method was applied in the spatial distribution 

patterns of selected agroforestry trees. Tree-landslide relationship was tested using the Pearson 

correlation method while root tensile and soil shear strength variations were tested with a one-way 

(ANOVA). Study results indicated that Tsume was characterized as very high 4.70 km² (5.17%) 

and high 22.62 km² (24.90%) susceptibility with population density and soil type as the highest 

contributors (12.05%) and (10.86%) consecutively while slope least contributed with (3.40%). 

Overall model performance was very good with ROC (AUC = 0.91). Species distribution results 

indicate high dispersion of Croton macrostachyus and Markhamia lutea across the study area and 

high concentration of Albizia coriaria downstream. A weak negative correlation (r = -0.20 < 0.01) 

was observed between DBH and landslide size. A one way ANOVA test of tensile strength 

revealed significant difference among species with (F(5, 573) = [18.161], p < 0.001), 

and Grevillea robusta (3.02±1.217kg/mm²), Albizia coriaria 

(2.53±1.382kg/mm²), and Markhamia lutea (2.28±1.01kg/mm²) as the best performers. Croton 

macrostachyus (1.78±1.167)kg/mm² and Cordia africana (1.69±1.153)kg/mm². The best shearing 

species was Albizia coriaria with average shear strength (of 52.46±10.24) kpa followed by 

Markhamia lutea (50.70±15.47) kpa. Eucalyptus spp. underperformed with average shear strength 

(46.75±12.92) kpa. In conclusion, hybridization of single landslide susceptibility models 

significantly improves landslide mapping and prediction accuracy. The model also showed that 

population density and soil type are the major drivers of landslide in Tsume micro-catchment. 

Furthermore, presence of trees reduces landslide risk in an area and DBH is a very important 

guiding factor. Therefore, mitigation measures should target population control and soil 

conservation practices such as tree planting specifically A. coriaria, G. robusta and M. lutea which 

have good slope stability characteristics.  

 

Key words 

Hybrid model, landslide, Mount Elgon, tensile strength, shear strength, Tsume 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

Landslides are a global hazard that lead to dramatic loss of human life, property and soils every 

year ( Chang et al., 2020; Tardío et al., 2016). According to Kavzoglu et al., (2015) landslides are 

responsible for 17% global fatalities, yet their occurrence is likely to increase due to effects of 

climate change and land use change (Tardío et al., 2016). In Africa, landslide have been 

responsible for deaths (3,171 persons), injuries (442 persons) and has affected 221,907 persons 

between 1910 to 2020  (Thongley and Vansarochana, 2021). This has been specifically reported 

in countries like Burundi, Kenya, DR. Congo, Tanzania, South Africa, Uganda and Morocco 

(Nakileza and Nedala, 2020; El Jazouli et al., 2020). In the East Africa 14 million highland people 

have been affected by landslides and floods combined between 1971 and 2015 (Bahal’Okwibale, 

2018).     

These enormous impacts have stirred immense studies on landslide causal factors and solutions  

amongst which include application of trees to restrain landslide risk (Aghda and Razifard, 2017). 

This use of trees is part of the ideas known as eco-engineering method (Tardío et al., 2016) . By 

definition Eco-engineering is the planting of trees with good soil stability traits or characteristics 

that restrain landslides. It was first introduced in 1930s (Mulyono et al., 2018) to stabilize slopes 

prone to landslides and soil erosion in mountainous areas like Elgon. To date, this method has 

proven its worth as a hydraulic channel, ground movement barrier and hydraulic pump (Hairiah et 

al., 2020; Balzano et al., 2019; Ghestem et al., 2011).  

In the Mt. Elgon region, studies (e.g. Nakileza & Tushabe, 2018; Nakileza et al., 2017) have 

however, addressed links of landslides to biodiversity and also recognized the importance of trees 

on increasing soil shear strength through tensile force provided by plant roots thus reducing 

landslide risk on scars. Mugagga et al., (2012) on the other hand assessed the role of land use 

change on landslide occurrence and found that the exponential conversion of forest land to 

agriculture greatly contributed to the current landslides. Recently Graham, Ihli, & Gassner, (2021) 

noted that agroforestry could improve community to mitigation and adaptation to climate change.  
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This current study analysed the mechanical role of tree roots on slope stability towards reducing 

landslide risks in the Tsume catchment. The key focus is on the dominant agroforestry tree species 

in the area. 

1.2 Problem Statement 

The use of plants to restore and protect landslide susceptible areas has been widely accepted as an 

effective eco-engineering measure (Tardío et al., 2016). This has triggered numerous tree planting 

initiatives by the local communities, Non-Governmental Organizations (NGOs) and government 

agencies in Mount Elgon region. For instance, the Face Foundation (UWA-FACE Project) in 1993 

(Snoep, 2011; Lang & Byakola, 2006), the Mt. Elgon Conservation and Development project 

(MECDP) in 2003 (Snoep, 2011), and Trees for Global Benefit (TGB) (Masiga et al., 2012) among 

others. However, landslides continue to occur even in some of the restored areas (Nakileza & 

Nedala, 2020) raising debate on whether tree planting is still an effective method for preventing 

slope failure. Besides, landslide prediction has been dominated by single bivariate statistical 

models as noted by  Mande et al. (2022) and Nakileza & Nedala, (2020) which do not cater for the 

complex and nonlinear characteristics of landslides thus undermining landslide prediction 

accuracy. Overall, limited research has been conducted on the efficacy of hybrid models on 

landslide prediction and the influence of agroforestry tree types particularly soil root reinforcement 

on slope stability enhancement in the region (Spiekermann et al., 2021; Hairiah et al., 2020).. 

Therefore, the current study sought to address this information gap by generating a hybrid model, 

assessing its performance, and quantifying tree roots influence on slope stability in Tsume micro 

catchment.  

1.3 General objective  

The study aimed to contribute towards development of an effective Landslide Eco-engineering 

Mitigation and Resilience plan through availing vital plant information for landslide risk reduction.  

1.3.1 Specific objectives 

To identify and characterize landslide susceptible zones in Tsume micro catchment using 

hybrid model  

To analyse spatial distribution and characteristics of selected tree species with potential to 

reduce slope failure in high landslide susceptible zones. 
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To determine selected tree species root reinforcement characteristics as a feature for promoting 

adoption by farmers and resource managers.  

1.3.2 Research Questions 

1. Which areas in Tsume micro catchment are prone to landslide hazard?   

2. What are the biophysical characteristics of areas in Tsume micro catchment that are prone to 

landslide hazard?   

3. What is the most influential pre-conditioning factor leading to landslide occurrence in Tsume 

micro-catchment? 

4. What relationship exists between tree spatial distribution and landslides?   

5. What are the tree-root reinforcement attributes for landslide risk reduction in Tsume micro 

catchment? 

1.4 Justification  

The relevance of this study lies in availing vital information on plant root systems to support tree 

species selection and adoption for slope stabilization in high landslide susceptible zones of 

Uganda. The research therefore, contributes towards achievement of SDG 13 and 15 which aim at 

reducing climate change risks and its impacts such as landslides, and conserving and restoration 

of terrestrial ecosystems including mountains through ending deforestation.  The research further 

contributes to achievement of aspiration 1 goal 7(4) of the agenda 2063 which aims at increasing 

climate resilience and natural disaster preparedness and prevention (African Union, 2015).  

The Office of the Prime Minister, Department of Relief Disaster Preparedness and Management, 

Ministry of Water and Environment (MoWE); National Forestry Authority (NFA); Uganda 

Wildlife Authority (UWA); National Environmental Management Authority (NEMA); and 

Department of Climate Change, Ministry of Water and Environment will use this research as a 

basis for developing a tree planting policy for combating landslide hazard in high susceptible areas. 

The NGOs such as Africa 2000 Network (A2N), Tree Adoption etc. will use this information as a 

guide during resource allocation in particular tree species to community thus avoid planting wrong 

trees in right places.  

The community will make use of the information for informed decision making on which tree 

species to plant in order to protect and restore their farmlands and increase the safety of their 
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homesteads. Lastly to researchers this research will be a bench mark for further studies in tree-

slope stability and landslide management relationships in Uganda. 

1.5 Scope of the study  

The study was conducted within 93.1 Km² of Tsume micro catchment of the Upper Manafwa 

Watershed. The study area was selected based on the prior hotspot analysis that revealed high 

concentration of landslides. Besides, in 2018 a total of 40 people lost their lives as result of 

landslide in the area. Recently the local media (Daily Monitor, Date July 6, 2022) reported a 3km 

landslide crack Figure 1 in the catchment which aggravates the risk to the community. This 

landslide crack was attributed to heavy rainfall that triggered its formation. The tasks in this study 

entirely focused on: developing a landslide susceptibility map, mapping the distribution of selected 

tree species while taking measurements of their diameter at breast height (DBH); mapping 

relationships between landslides and vegetation; analysing root tensile strength, Index of Root 

Binding (IRB) and soil shear strength in a period of 30 weeks from January 2022 to August 2022. 

This period was purposely selected to represent both the wet and the dry season. Shear strength 

analysis was carried in wet season to represent the actual in-situ soil conditions. Only landslides 

with area (≤450m²) and depth (≤3m), as guided by Collins et al., (2012), were included in the 

study.   

     

Figure 1: Landslide cracks in Nakhatore village, Tsume micro-catchment  

a b 
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1.6 Conceptual framework  

Landslides occur as a result of numerous causative factors (Figure 2) which include; geomorphic, 

topographic, hydrologic, vegetation, geologic, meteorological, human and pedological factors 

(Zhao & Chen, 2020). These prepare and operate synergistically to cause landslides, and therefore 

understanding each factor contribution is a significant milestone towards  accurate landslide 

prediction   and management (Devkota et al., 2013). In this particular study however, vegetation 

as a control through selected mechanical pathways was analysed. Vegetation is the most important 

landslide causative factor during landslide risk management because it  emerges as both a landslide 

control (Purwaningsih et al., 2020) when well managed and a trigger when mismanaged (Li et al., 

2021).  This results into a negative feedback or a positive feedback loop respectively.  

Vegetation in the negative feedback loop mechanism can be conceptualized as “Planting a Right 

Tree in a Right Place” in this particular study. This concept focuses on only those slope 

stabilization benefits attained when trees with good characteristics are planted on unstable slope.  

The good characteristics of trees can be categorized into mechanical and hydrological pathways 

among others. For instance vegetation facilitates runoff generation compared to infiltration in the 

process known as interception (Okello et al., 2015). Vegetation  also controls soil hydrological 

properties through increasing suction pressure in a process known as evapotranspiration (Nakileza 

et al., 2017; Chirico et al., 2013). This enhances the formation of well-drained soil surface horizon 

(Preti, 2013) and thereby stabilizing a slope. These two processes are categorized as the 

hydrological pathway of the negative feedback loop.  

Furthermore vegetation roots contribute to increased shear strength by providing additional 

reinforcement parametrized as apparent cohesion in slope stability models (Yu et al., 2020; Preti, 

2013). These root  reinforcement characteristics can be independent of hydrological and chemical 

properties but rather, dependent on a combination of tensile strength, root density, root depth, and 

root architecture (Lee et al., 2020). The root density and root architecture can be used to measure 

horizontal root reinforcement using index of root binding (IRB). These are known as the 

mechanical pathways of vegetation control.  

Planting of “Wrong Trees in a Right Place” is the second concept of this research ought to be 

addressed. This notion falls within the positive feedback loop mechanism of vegetation on 

landslide. This concept is achieved when accurate prediction of landslide hotspots is performed 
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considering causative factor influence. However, trees with poor slope stability characteristics are 

planted thus exacerbating landslide formation. Yu et al., (2020) and Nakileza et al., (2017) 

explored some of the positive feedback mechanisms of trees and vegetation and agreed that mature 

trees contribute to landslide formation through exerting addition weight on to already unstable 

slopes. FAO, (2010) added that trees maybe limited especially during windy conditions, on deep 

landslides, and on very steep slopes but acknowledged that still trees would make a difference.   

Therefore, planting trees of negative feedback characteristics in a high landslide susceptible zones 

after accurate prediction of landslides by considering each causative factor influence would result 

in an effective landslides control. This is termed as planting “Right Trees in the Right Place” as 

recommended by (Nakileza & Nedala, 2020) as appropriate greening strategy.  

 

 

Source: Adopted and modified from (Mulyono et al., 2018) 

Figure 2: Study Conceptual framework 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Landslide mapping and characterization 

Landslides or landsliding is a well-known subject in Uganda, especially in the Elgon region where 

their occurrence is abnormally frequent. It is a well-researched subject by numerous scholars 

(Makabayi et al., 2021; Bamutaze, 2019; Van Eynde et al., 2017;  OPM, 2016; Misanya & Øyhus, 

2015; Dierickx, 2014; Mugagga et al., 2012a; Knapen et al., 2006). These studies have tried to 

answer questions as to; why they are common? Where they are common? Landslide implications 

and solutions among others.  In 2014,  Dierickx, (2014) studied the socio-economic consequences 

of landslides in the region considering buildings as one of the major elements at risk. However, 

most studies have deliberated on deep seated landslides in the region such as the Bukhalasi 2010 

landslide and Nametsi 2018 landslide with little attention to shallow seated ones. According to 

(Balzano et al., 2019) shallow landslides are one of the most important hazards as they have the 

potential to culminate into highly destructive slides and mudflows. Unfortunately these have not 

been well studied especially their predictability as stressed by (van Zadelhoff et al., 2021).  

2.1.1 Landslide susceptibility mapping 

The first critical step in disaster risk management such as landslides in any ecological unit is hazard 

identification which involves susceptibility mapping (Zhao & Chen, 2020). Landslide 

susceptibility mapping is defined as the probability of landslide occurrence in certain area under 

force of action by pre-conditioning factors such as environmental, geological and human activities 

(Chen et al., 2020). Three distinct approaches for analysing landslide susceptibility have been 

brought forth and these include statistical modelling, machine learning and hybridization  (Chen 

et al., 2020). However, existing literature has indicated the dominance of  statistical models  such 

as logistic regression, frequency ratio, neural networks, overlay, statistical index, evidential belief 

functions, certainty factor, weight of evidence, index of entropy  (Yordanov & Brovelli, 2020) 

over the others. Nevertheless Roslee et al, (2017), examined the adoption of these approaches and 

revealed that statistical models are quantitative and can evaluate various effects of each pre-

conditioning  factors on a case by case basis. In contrary, Kavzoglu et al., (2015) found that 

statistical approaches draw their conclusions on the assumption that future landslides will be more 
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likely to occur under similar condition to those of the previous landslides which presents some 

weaknesses.  

To counter some of these assumption errors, machine learning models were proposed to fit and 

predict nonlinear correlations between landslides and conditioning factors (Chang et al., 2020). 

These include the Random Forest, Artificial Neural Networks (ANN), Kernel machines, Support 

Vector Machines, Credal Decision Tree, and Radial Basis Function Network  (Dung et al., 2021; 

Lee et al., 2017) among others. 

It is of recent that new efficient  approaches have emerged to predict landslide risk which, include 

hybrid models  (Dung et al., 2021;  MFONDOUM et al., 2020). By definition hybrid models refers 

to the integration of two or more independent models to solve a single problem. For example (X. 

Zhao & Chen, 2020) integrated the decision tree model and the logistic regression (LR) model to 

produce a Logistic Model Tree (LMT). In their research, hybrid model (LMT) was found to be a 

better predictor of landslides than the single models.  

Chen et al., (2020) integrated state-of-the-art artificial intelligence algorithms (SysFor) and two 

bivariate models, namely the frequency ratio (FR) and index of entropy (IoE), to predict landslides. 

From their analysis the FR_SysFor model and IoE_SysFor model, which are hybrid models, 

performed better than the single models under study.  

Meanwhile (Dung et al., 2021) explored the effectiveness of Bagging-RS and AdaBoost-RS hybrid 

models on landslide susceptibility Son La hydropower Reservoir. From their finding the hybrid 

models performed better than all single models with Bagging-RS being the best predictor. As such 

(Dung et al., 2021; Zhang et al., 2019) concluded that hybrid models are more fitting to landslide 

susceptibility mapping than any others because they cater for all complex and nonlinear 

characteristics of this event.  

In Uganda however, landslide susceptibility mapping has followed single statistical models 

(Nakileza & Nedala, 2020; Broeckx et al., 2019; OPM, 2016; Staudt et al., 2014) that are wanting 

(Chen et al., 2020) to predict landslide risk. It is in this regard that this study has focused on 

integrating frequency ratio model, index of entropy and weighted overlay to accurately predict 

landslide hazard in Tsume micro catchment of Manafwa watershed.  
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2.1.2 Landslide characterization  

In order for one to characterize landslide susceptibility into zones also known as hazard zonation, 

GIS and remote sensing has been a tool of greater importance because it spatially integrates all the 

pre-conditioning and trigger factors into one (Roslee et al., 2017). It is from this integration that 

areas under threat of landslide hazard can be characterized as very high or very low based on 

statistical and empirical methods in GIS (Cabral et al., 2021).  Several parameters have been 

included in landslide characterization e.g. slope, landuse, distance to streams to mention but a few. 

For instance, slope is one of the input parameters for landslide characterization which measures 

the stress distribution inside a slope and effective surface (Zhang et al., 2019). When subjected to 

snow melting, heavy rainfall, earth quakes, volcanic activities, and land use change that are the 

major triggering factors (Kavzoglu et al., 2015), then landslides are bound to occur in areas of high 

slope. Similarly vegetation, aspect and hydrological regimes are equally significant in influencing 

landslides (Zhang et al., 2019). Lithology on the other hand determines the mechanical strength, 

weathering resistance, and stress distribution which in turn influences slope stability  (Zhang et 

al., 2019). Therefore, combining lithology with other landslide conditioning factors would produce 

a more accurate landslide susceptibility map. 

Landslide characterization however, suffers from one novel challenge which is selection of the 

best parameter combinations (Kavzoglu et al., 2015). The parametrization processes is dependent 

on expert knowledge  creating a research gap (Roslee et al., 2017; Kavzoglu et al., 2015). The 

weight of evidence model is one of the approach that curtails this problem because it is a data 

driven model (Mande et al., 2022).  To  produce a logical hazard zonation map, there should be 

some level of data consistence (Kavzoglu et al., 2015) and parameter standardization which this 

study intended to address using hybrid model.  

2.2 Agro-forestry and slope stability  

Vegetation as a landslide control measure has been widely studied by scholars worldwide. Sofia 

& Afonso, (2019) studied the significance of herbaceous plants, shrubs and trees on slope stability. 

Their study focused on different pathways in which herbaceous plants, shrubs and tree contribute 

to slope stability and concluded that trees were more suited for slope stability than herbs.  

Normaniza et al., (2008) studied the role of leguminous tree Leucaena leucocephala on slope 

stability and concluded that this tree was best suited for slope stability due to high root 
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reinforcement capacity characteristics and high-water absorption capacity. Other studies by state 

include Kenya (Nyambane & Mwea, 2011); Indonesia and China (Li et al., 2021); USA (Roering 

et al, 2003); Alaska, Thailand, Canada, New Zealand, Australia; the Mediterranean regions 

(Hairiah et al, 2020); and Japan (Tsukamoto, 1990) etc., have harnessed tree planting technology 

by drawing linkages among root strength, landsliding, and forestry tree stands.  

In Uganda diminutive attention has been given to agroforestry as landslide control, yet it is the 

most wide spread initiative adopted by the local community (Mertens et al., 2018). Mertens et al., 

(2018) studied community perceptions towards landslide hazard controls measures in Kasese 

district and found that the adoption of tree planting technology was driven by multiple benefits 

derived from it such as hydrological control, source of energy, source of timber, windbreaker, and 

source of food among others. Moreover, Buyinza et al, (2020) found that Cordia africana, Albizia 

coriaria, Grevillea robusta and Eucalyptus are the most preferred tree species in Elgon region for 

landslide risk reduction. Similarly Lunyolo et al., (2021) also found that Eucalyptus species was 

the dominant tree species utilized for landslide hazard management especially scar recovery 

because they are fast growing trees.  As such Mertens et al., (2018) has described tree planting as 

the cheapest and within reach control method of landslides by local farmers thus its wide spread. 

Nevertheless, there is no systematic scientific research that has been done tailored towards 

understanding the influence of vegetation on slope stability. That is to say most existing literature 

focuses on influence of soils (Bamutaze, 2019; Kitutu et al., 2009), shear strength (Mugagga et al., 

2012a), land use change (Mugagga et al, 2012b), meteorology (Okello et al., 2015 and Knapen et 

al., 2006)  and topography (Nakileza & Nedala, 2020) creating a research gap.  

Most of the existing studies have concluded that vegetation stabilizes slope by strengthening soil 

structure through hydrological and mechanical means (Ettbeb et al., 2020).  The hydrological 

means of control include suction and interception while mechanical means include increased 

cohesion as a result of roots and soil particle interaction.  Therefore, this study quantified the 

mechanic influence of selected agroforestry tree species on slope stability in Tsume micro 

catchment by relating tree species distribution and dbh to landslide slide scar formation.  
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2.3 Tree root reinforcement for slope stability 

Roots are very important structures on plants that provide anchorage to the ground.  These root 

anchorage and reinforcement capabilities are the most important factors of slope stability (Lee et 

al., 2020). They are characterized by tensile strength which is the measure of force at root rapture 

to its diameter (Badhon et al., 2021). Roots can respond to shearing force in three ways namely 

stretching, slipping, and breaking (Tosi, 2007). As such they contribute additional soil strength 

against horizontal forces during shearing on a plane (Wang et al., 2020). Many scholars have gone 

an extra mile to evaluate  relationships between tensile strength and root diameter (Ettbeb et al., 

2020). Their studies have found that root distribution is heterogeneous and the root reinforcement 

results are controlled by large roots, which hold much more force than small roots (Hairiah et al., 

2020).  

In summery landslide susceptibility mapping is a critical step in managing landslide risks but the 

methods of susceptibility modelling are equally important. Eco–engineering was recognized as the 

most utilized landslide control method by several researchers and community because it is cheaper. 

Based on the reviewed literature, the most preferred tree species for landslide control were Cordia 

africana, Albizia coriaria, Grevillea robusta and Eucalyptus. However, there was limited 

information quantifying species by species contribution and roots contribution to slope 

stabilization. Reviewed literature indicated that susceptibility assessment in Manafwa catchment 

followed statistical methods such as logistic regression, frequency ratio, and weight of evidence. 

These do not account for all complex and nonlinear characteristics of landslide events. Thus, 

calling for improved model versions such as hybridization or use of hybrid models.  
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CHAPTER THREE 

METHODOLOGY 

3.1 Description of Study area  

Tsume micro catchment is part of the Manafwa watershed located on the upper slopes of Mt. 

Elgon, stretching to about 93.1Km² (Figure 3). The catchment lies between latitude 0⁰ 59` 0” N to 

1⁰ 7` 0” N and longitude 34⁰ 21` 30” E to 34⁰ 32` 0” E with a maximum altitude of 4,226 meters 

and a minimum of 1,789 meters (a.s.l). River Tsume, Ulukusi and Ukha drain the area pouring 

their waters in River Manafwa which finally empty’s in Lake Kyoga through Mpologoma wetland. 

The main geology is fenitised basement rocks (Kitutu et al, 2009) and the main soil types are 

luvisols, feralsols, nitosols and leptosols (Nakileza & Nedala, 2020).  

 

Figure 3: Location of Tsume micro catchment in Uganda 

3.1.1 Relief 

Tsume comprises of various unique relief features such as the V-shaped valleys, sharp ridges and 

cliffs (Atuyambe et al., 2011). Specifically the Nusu ridge and Bukhalasi transect are iconic 
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landforms in the micro-catchment  characterised by many translational landslides (Makabayi et 

al., 2021); Claessens et al., 2007). Besides, the slopes of the cliffs and ridges in Tsume appear 

rectilinear and sharply dissected  (Nakileza & Nedala, 2020) due to loss of vegetation and soil 

type.  

3.1.2 Climate 

Tsume is situated in a biomodial climate zone with two rainfall season MAM and SOND (Opedes 

et al., 2022).The annual precipitation of the area ranges from 1000mm to 1600 mm (Nakileza & 

Nedala, 2020) due to terrain and dense montane forests (Sebatta et al., 2020) of Mt Elgon National 

Park in the North Eastern part of the micro catchment. The mean average temperature ranges from 

15˚C to 23˚C (Opedes et al., 2022; Graham et al., 2021; Mukadasi et al., 2007).  

3.1.3 Vegetation cover 

Tsume shares similar vegetation characteristics as the entire Elgon region. The vegetation is zoned 

altitudinally with montane forest types (Sebatta et al., 2020). Afro-Alpine and moorland cover 

cover areas above 3500m, heath zone (35,000–3000 m), low canopy and mixed bamboo (3000 m 

to 2500 m), tropical montane forest (2500 m–1800 m), and the farmlands at the foot slopes (Opedes 

et al., 2022). Common indigenous tree species in the area include Markhamia lutea, Albizia spp., 

Ficus spp. and Cordia africana (Graham et al., 2021). Yushania alpina  bamboo (Paul et al., 2015) 

is dominant in high zones.  

3.1.4 Socio-economic set up 

Agriculture is the major economic activity of the area dominated by subsistence farming (Sebatta 

et al., 2020). Coffee forms the major cash crop in area grown on an agroforestry system of trees 

and bananas (Gram et al, 2018). In wet seasons, annual crops such as maize, beans, onions and 

cabbages are grown (Opedes et al, 2022). Onions are the second-best cash crop after coffee grown 

within the transboundary management areas of the park. The area is also famously known for 

eating bamboo shoots of Yushania alpina (Paul et al., 2015) locally known as “Malewa or 

Maleya”(Paul et al., 2015).  

3.2 Research Approach & Design 

A quantitative research approach comprising of mapping surveys and experiments was used to 

achieve the study objectives. All research activities were concentrated in the very high-risk zones 

of the landslide susceptibility map and landslide scars. The landslide sampling frame was (N=171) 
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scars clustered into two strata namely; landslide in the national park and landslides on community 

land using the Elgon National Park shapefile, as a classifier regardless of landslide size.  

A stratified random sampling technique based on ArcGIS random sampling tool was used to 

generate sample elements (landslide scars) automatically. A total of (n=12) landslide scars was 

generated where 20 meters buffer was established. The buffer distance was informed by Sofia & 

Afonso, (2019) who indicated that mature shrubs and trees can extend their roots up to  ≥16 meter 

distance or as twice as their canopy. Given the high variations in landslide environmental 

conditions, size and depth across the study area, scars of area (≤ 450mᶟ) and depth (≤3m) were 

considered (Collins et al., 2012) and treated equally as much as possible (Burger et al., 2021). 

Identification of species, dbh measurements and mapping of agroforestry trees was confined within 

the 20m buffer.  

For root tensile strength analysis, 9 samples Osman et al., (2011) of saplings of each selected 

agroforestry tree species in the 20m buffer with a dbh ≤ 5cm Hairiah et al., (2020) were randomly 

selected. Only roots with diameter ≤ 6mm were considered for tensile strength analysis (Nyambane 

& Mwea, 2011). This was because the available tensile strength apparatus could only manage 

small roots of diameter ≤ 6mm.   

A total of 198 soil shear strength samples were randomly collected at an interval of ≤2m from the 

tree base. Of the total samples (168) were tested in situ and 30 were tested in lab for validation. 

Replicates (28) for in-situ and 5 for validation per species were carried out. Direct shear test was 

done from the lab in accordance with the ASTM D3080 standards (Rasti et al., 2021; Islam et al., 

2021). Nevertheless, sampling was limited to only trees that met the tree selection criteria with 5 

replicates per species.  

3.3  Data Collection Methods 

This section presents data types, materials and methods used to achieve the study objectives. It 

expounds on data types and their sources, roots and soil sampling procedures, sample preparation 

procedures, spatial analysis tools used, the key methods of data analysis and how they were 

applied.  
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3.3.1 Landslide susceptibility modelling 

A total of sixteen (16) conditioning and trigger factors were considered for the development of 

landslide susceptibility map based on the commonly reported factors whose data is readily 

available (Mande et al., 2022; Opedes et al., 2022; Nakileza & Nedala, 2020) These include; slope 

angle, altitude, plan curvature, profile curvature, topographic wetness index, slope aspect, stream 

power index, lithology, drainage density, distance from streams and rivers, distance from road, 

vegetation cover represented by Normalized Difference Vegetation Index (NDVI), soil moisture 

represented by Normalized Difference Moisture Index (NDMI) (Fatemi Aghda et al., 2017), land 

use/cover, topographic roughness index and population density. All conditioning factors were 

carefully selected to represent topographic, hydrologic and human interactions (Sahana, 2017) 

unlike most susceptibility models in the study area that entirely focused on biophysical parameters.   

High resolution DEM ALOS-PALSAR of 12.5 meter (Ghosh et al., 2020; Alahmadi, 2019; 

Nitheshnirmal et al., 2019) was acquired from Alaska Satellite Facility 

(https://search.asf.alaska.edu/#/) and re-projected to Arc1960 UTM 36N  to derive topographic 

and hydrological parameters.  

Landslide scars were obtained from Makerere University Mountain Resources Centre database, 

(MRC-Mak) and the previous study databases by Lunyolo et al., (2021) and Nakileza & Nedala, 

(2020). These were validated and updated through field visits using a TDC600 GPS and google 

earth image. About 90% of data from the databases was point data thus suitable for model training 

and validation.  

The NDVI and NDMI were computed from 10- and 20-meter sentinel 2B images to evaluate 

vegetation influence and soil moisture respectively.  Acquired images were downloaded from 

Copernicus open data hub with <10% cloud cover. Resolution of  all datasets was harmonized 

using bilinear upscaling method and mean downscaling method to 12.5m spectral resolution 

(Tavares et al., 2019). The Humanitarian Data Exchange portal by OCHA accessed through link 

(https://data.humdata.org/)  was visited for updated road networks data (Payne et al., 2012). These 

were validated using UNRA road data layer and gaps were filled by digitizing recent Google Earth 

Pro images 

 

https://search.asf.alaska.edu/#/
https://data.humdata.org/
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3.3.2 Mapping the spatial distribution of agroforestry tree species 

Tree species selection  

The criteria for selecting tree species for research included; dominant agroforestry species in the 

study area, well researched trees (e.g. Calliandra and Cordia africana) in regard to landslide 

control (Mulyono et al., 2018), and indigenous tree species such as Markhamia lutea. Focused 

Group Discussions (6) were held in different places (Munyende village, Ibookho, Bundesi primary 

school, Itimbwa, Nakhatore and Bukhalasi Primary school) to identify commonly planted 

agroforestry tree species (Figure 4). Details on FGD meetings are provided in Appendix 1. The 

results from the FGD were then used for the study       

   

     

Figure 4: Focused Group Discussion with farmers during reconnaissance 

Tree mapping 

The landslide susceptibility and landslide scar maps were used to determine mapping areas. That 

is to say, the most susceptible areas and landslide scars were extracted and uploaded to QFIELD 

Mobile Application on TDC600 GPS to map all tree stands in the 20m buffer and their diameter 

at breast height (dbh). QFIELD is an open-source mobile application designed for mobile spatial 

data visualization and capture (Davies et al., 2006). The tool selection was based on Davies et al., 

(2006) criteria such as ability to run offline, operate on Android operating system, navigate to 

spatial features using device GPS, display spatial data, store data,  capture geographic features 

among others.  

(b) FGD with female farmers in Ibookho village (a) FGD with male farmers in Ibookho village, Bukalasi 

Sub County 
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3.3.3 Root sample collection for tensile strength analysis 

A detailed sampling framework entailing sample size, design etc. is well articulated in subsection 

3.2. above. The digging of the roots was rather dependent on the number of roots available at each 

particular tree, depth and species and it varied across species and tree. Sampling sites were then 

tracked using a TDC600 GPS and QFIELD mobile application.  Using a hoe, a rake and a sharp 

knife, roots of selected agroforestry trees were carefully extracted from the soil. These were zipped 

in a plastic bag and labelled for subsequent analysis in the lab. 

Root sample preparation 

All roots from the field were cleaned and trimmed to 30cm for easy loading and storage (appendix 

2). Defects such as physical damage e.g. breakage due to poor handling and root rot were inspected 

and removed from all samples. The clean samples were then stored in a deep freezer ≤ 0˚C to 

control biological processes such as decay and drying of the samples.  All frozen samples were 

kept for only ≤ 36hrs and those beyond were discarded. The assumption was that those beyond the 

36hrs had been affected by biological processes and there not fit for use since the study object was 

to test fresh roots.  

Root loading 

Root diameter at head and tail was taken using a digital Vernier caliper before loading. The Caliper 

has a measuring range of 150mm/6in and resolution accuracy of +/-0.01mm (Comino & Marengo, 

2010). To reduce root damage by the apparatus clips and increase grip, all samples were wrapped 

with paper-based sole tape on both ends. The roots were then loaded on the developed tensile 

machine (apparatus) in the Appendix 3. The apparatus was fabricated in house and it comprised of 

the digital weighing scale (capacity = 50kg), wedge clips, and a vice that acted as the effort.  

3.3.4 Soil sample collection for shear strength analysis 

Cylindrical soil cores of 80mm internal diameter  and 130mm height were used to collect 

undisturbed soil samples for shear strength analysis, contrary to Balzano et al.,  (2019) and 

Mugagga et al., (2012a) who utilized shear boxes with a square cutter. Cylindrical cores were 

opted due to the design of the shearing machine. Additionally in-situ shear strength analysis was 

carried out using a Torvane (Pocket Vane Tester) as described by Avunduk et al., (2021) and Al-

Rubaiee & Jajjawi, (2018). The measuring range of the torvane was (0 – 250) kpa and the adapter 

size for measuring was CL 100 = 1.0936 kg/cm² per complete revolution.  
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3.4  Data Analysis  

3.4.1 Identification & Characterisation of landslide susceptible zones 

Landslide susceptibility modelling was performed using hybrid models namely; frequency ratio 

(FR) equation [1 – 2] (Nakileza & Nedala, 2020), index of entropy equation [3-9] (Perera, et al., 

2019) and weighted overlay method (Karimzadeh & Matsuoka, 2018). These are statistical 

bivariate and probabilistic models which minimize subjectivity in weightage assignment in 

landslide modelling, producing more objective and reproducible results (Kornejady & Afzali, 

2019). The frequency ratio model was adopted to measure factor influence at subclass level while  

the entropy calculated objective weights of the index system (Jaafari et al., 2014).  The two models 

were integrated by weighted overlay model to produce a landslide susceptibility map. NDVI and 

NDMI parameters were analysed following Aghda & Razifard, (2017). 

𝐹𝑅 =
(
𝐷𝑖

𝐴𝑖
⁄ )

(
∑ 𝐷𝑖

∑ 𝐴𝑖
⁄ )

… . (1)   

𝑃 =
(𝑑2)𝑢

𝑒2
… . (2) 

Where; 𝐷𝑖 represents number of landslides per subclass of a conditioning factor, 𝐴𝑖 is the area per 

subclass of conditioning factor in Km², ∑ 𝐷𝑖 is the total number of landslides in the study area and 

∑ 𝐴𝑖 is the total area of the study area in Km². Equation 1 was converted into standard units (SI) 

for easy measurement using equation 2 where 𝑑 represented the image resolution,  𝑢 pixel number 

and 𝑒 as conversion factor of meters to kilometres which is equivalent to 1000 meters.  

The index of entropy was explained as:  

𝑃𝑖𝑗 =
𝑏

𝑎
… (3) 

(𝑃𝑖𝑗) =
𝑃𝑖𝑗

∑ 𝑃𝑖𝑗
𝑆𝑗
𝑗=1

… (4) 

𝐸𝑗 = −𝐾 ∑(𝑃𝑖𝑗)𝑙𝑜𝑔2(𝑃𝑖𝑗)  𝑗 = 1 − 𝑛 … (5)

𝑆𝑗

𝑖=1

 

𝐺𝑗 = 1 − 𝐸𝑗 , 𝑆𝑗   is the number of classes … (6)  

𝐾 =
1

𝑙𝑜𝑔2𝑆𝑗
… … . . (7) 
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𝑊𝑗 =
𝐺𝑗

∑  𝐺𝑗   𝑛
1

   𝑛 = 1,2,3 … … … . (8) 

Where; a and b represent domain and landslide percentages respectively, 𝑃𝑖𝑗  is the probability 

density (FR), 𝑊𝑗  is the resultant weight value for the factors as a whole. Finally the landslide 

susceptibility map (LSM) was produced by aggregating all conditioning factors and their influence 

using equation [9] (Thongley & Vansarochana, 2021) modified to equation [11] to enable 

operations in weighted overlay tool.  

𝐿𝑆𝑀 = ∑ 𝐶𝑥 𝑊𝑗 … … … (9) 

𝑃𝑤𝑗 =
𝑊𝑗

∑ 𝑊𝑗
𝑥100 … … . . (10) 

𝐿𝑆𝑀2 = ∑ 𝑃𝑤𝑗 𝐶 … … … (11) 

Where; C is the class weight (FR) and 𝑊𝑗 is overall conditioning factor weight,  𝑃𝑤𝑗 is the 

percentage of overall conditioning factor weights and 𝐿𝑆𝑀2 is the weighted overlay model.  

3.4.2  Tree distribution and slope stability 

Spatial distribution and direction of selected agroforestry tree species was analysed using standard 

deviation ellipse method of ArcGIS (Moore & McGuire, 2019; Zhao et al.,  2022). The method is 

widely used to explore and analyse spatial variation of geographic phenomenon and it provides 

centre of rotation, distribution, orientation and shape (Guo & Yuan, 2022). In this study species 

names were used as case file to measure agroforestry tree dispersion and orientation. Standard 

deviation 1 was used to define ellipse size (Perzia et al., 2022). Finally the  relationship between 

tree distribution and landslide occurrence was achieved through correlation analysis. Collins et al., 

(2012) has used correlation methods to test relationship between landslide occurrence and several 

factors such as slope, geology and earthquakes. Similarly in Uganda Bamutaze, (2019) used 

correlation to test relationship between landslide occurrence and morphometric attributes. In this 

study landslide size (y-axis) and tree diameter at breast height (x-axis) was correlated. 

3. 4.3  Tree species root characteristics for slope stability 

Root reinforcement characteristics were determined by analyzing root tensile strength, Index of 

Root Binding (IRB) of soil and soil shear strength. According to Comino & Marengo (2010) 
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effective root reinforcement can be measured through soil shear strength,  root tensile strength and 

root architecture. Therefore, root tensile strength was expressed as a ratio of resistance and root 

area [Equation 12] which is measured as the ratio of maximum force applied to a root at the failure 

surface to its root diameter (Ettbeb et al., 2020; Lee et al., 2020):  

𝑇𝑟 = 4𝐹
𝜋𝑑2⁄ … (12)   

Where; 𝑇𝑟  is the tensile strength, 𝐹 is the maximum load at the rupture point (N) and 𝑑 is the 

average roots diameter. However, other researchers have expressed the tensile resistance-diameter 

relationship in terms of force unit using power law equation (Ettbeb et al., 2020; Sofia & Afonso, 

2019;  Comino & Marengo, 2010) given in equation [13]. The current study focused on tensile 

strength rather than force as given in equation [12].  

𝑇𝑓 = 𝛼. 𝑑𝛽 … (13)  

Where; 𝑇𝑓is tensile force (N) and 𝑑 is the average root diameter (mm).  

Then the Index of Root Binding of soil (IRB) was calculated using equation [14] as proposed by 

Hairiah et al., (2020) expressed as:  

𝐼𝑅𝐵 =
∑(𝐷𝐻𝑅)2

𝐷𝐵𝐻2 … . (14)  

Where; 𝐷𝐵𝐻  is tree diameter at breast height (1.3m height) and 𝐷𝐻𝑅  is the diameter of the 

horizontal roots. However, this method was modified to mean diameter of horizontal roots and 

mean DBH.  Finally the overall root reinforcement was determined using the soil shear strength 

calculated from equation [12] below ( Yu et al., 2020; Ettbeb et al., 2020; Sofia & Afonso, 2019; 

Comino & Marengo, 2010).  

 𝐼𝑅𝐵 =
∑(𝑀𝑒𝑎𝑛 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑟𝑜𝑜𝑡𝑠)2

𝑀𝑒𝑎𝑛 𝐷𝐵𝐻2 … . (15)  

𝑆 = �̥� +  𝐶𝜀 + �̥�𝑡𝑎𝑛�̥� … (15)  

Where,  𝑆 denotes the effective soil shear strength (KPa), �̥� is the soil cohesion (KPa), 𝐶𝜀 is the 

root reinforcement calculated from equation  [16] (Fata et al., 2021),  �̥� is normal load (pa), and �̥� 

is the angle of internal friction in degrees.  
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𝐶𝜀 =  𝑇𝑟 (
𝐴𝑟

𝐴
) (sin 𝜃 + cos 𝜃 tan ∅) … (16) 

Where 𝑇𝑟is the tensile strength per unit area of roots, 𝜃 is the relative vertical deviation angle of 

roots subjected to shear deformation in degrees, 𝐴𝑟 is the total cross-sectional area of all roots 

and 𝐴 is the area of soil in the sample. 

3.5. Validation of susceptibility map 

Accuracy assessment of a landslide model is a fundamental step towards managing landslide 

hazards (Pourghasemi et al., 2012). The process starts by defining training data samples and 

validation samples. Training data is 70% of total landslide inventory and is used to train the model 

while 30% is the validation data (Dung et al., 2021; Chen et al., 2016). In this research 120 (70%) 

was used to train the model while 51(30%) to validate the model. Receiver Operator 

Characteristics curve (ROC) method constructed on true positives (TP), false positives (FP),  true 

negatives (TN) and false negatives (FN) (Thongley & Vansarochana, 2021) was used to achieve 

this exercise. The performance of the landslide susceptibility map was automatically evaluated 

based on the area under the curve (AUC) values from ArcSDM extension of ArcGIS (Wang et al., 

2020; Ma et al., 2018) model performance are generated automatically.  

3.6. Environmental and Ethical consideration 

Tensile strength assessment required one to uproot the entire plant to expose available roots, thus 

making this method destructive. To minimize such effects, only three roots were extracted from 

each sample element after careful observation of the plant health. Plants exhibiting poor health or 

stunted growth were excluded from the study. Farmers consent prior to root extraction was pursued 

verbally after informing them about the likely risks of giving out their trees for the study. Then 

using a hoe and a sharp knife, roots were carefully dug out about 30cm away from the stem base.  

A no plastic bag policy was also strictly adhered to by the researcher and his helpers to avoid or 

minimize plastic pollution of the ecosystem. Only reusable materials were utilized including 

metallic cans for carrying drinking water and sisal sacs for carrying soil samples. Root tensile 

strength were carried out in the field to avoid littering.  
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3. 7. Limitations 

Testing tensile strength of big roots would be impeccable for this study however, there was 

shortage of equipment to cover big roots. As such a small apparatus comprising of a digital spring 

weighing scale, clump and a Vernier calipers was developed from scratch to test small roots 

(<6mm) diameter. The study assumed that a tree species with good characteristics at young age 

such as high tensile strength, IRB and shear strength would maintain or even improve its 

characteristics with maturity. However, Ettbeb et al., (2020) noted that there is an inverse 

relationship between root diameter and tensile strength and small roots have higher tensile strength 

compared to larger roots. Unfortunately, their study did not provide the most ideal diameter (upper 

limit) thus leaving a gap for doubt. Basing on this literature and limitation by the tensile machine, 

(<6mm) diameter threshold was selected depending on the easy of loading. Calibration of the 

system particularly the weighing scale was undertaken following Uganda National Beaurue of 

Standards (UNBS) guidelines to improve precision and accuracy of the machine.  The calibration 

certificate is provided as evidence in Appendix 4. Additionally, tree age influence on shear strength 

and slope was not integrated in the model due to shortage of equipment and failure to identify tree 

species age in situ. Digging of roots especially Markhamia lutea and Cordia africana was very 

challenging. Markhamia lutea was characterized by fewer roots and Cordia african with a deep 

root system which increase sample extraction time.   Finally, the soil shear strength testing was 

very expensive with limited laboratories that can perform the analysis. To reduce the cost and also 

increase on the sample size, a handheld shear Torvane was used to measure 168 shear samples in-

situ and only 30 lab as validation data. 
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CHAPTER FOUR  

PRESENTATION OF RESULTS 

 4.1 Characterization of Tsume catchment landslide susceptibility using a hybrid model  

Detailed characterization of Tsume landslide susceptibility is presented in table 1 and individual 

maps in Figure 6.  The NDVI frequency ratio (FR) indicated that class 0.51 - 0.6 and 0.41 - 0.5 

were the most problematic in terms of landslide occurrence with a FR (2.64) and FR (1.29) 

respectively. The highest FR (2.37) and FR (1.44) of the NDMI was recorded in class 0.11 - 0.21 

and -0.04 - 0.1 indicating that increase in soil moisture directly increases the risk to landslide. 

Distance from streams network analysis revealed that the highest FR (1.29) was in the range of 

50.1 – 100.  Moreover, an analysis of altitude and landslide occurrence revealed that most 

landslides were bound to occur in class 1,288 - 1,500 with highest FR (3.67) thus it is very 

problematic. 

Similarly, the Stream Power Index (SPI) also indicated that class 1.36 - 2.04 was the most 

problematic with FR (2.58) while class 0.92 - 3.48 of the plan curvature and class 0.433 - 1.29 of 

the profile curvature emerged as the most challenging classes with FR (1.36) and (2.19) 

consecutively.  In terms of aspect the Northeast facing slopes presented more proneness to 

landslides with high FR (8.57). This was further exacerbated by slope angle of 25.1 – 30 degrees 

with a FR (2.21).  

In terms of LULC, the Built-up area and the Agriculture classes had the highest FR (2.47) and FR 

(2.43) indicating the importance of human activity on landslide occurrence. The results were in 

agreement with population density and distance from road data. Their frequency ratios were 

recorded as (4.73) in class 1,001 - 1,500 persons per square kilometer of the population density 

and (2.50) and (2.09) of class distance 0.06 - 0.18 and < 0.05 km consecutively. 

The relationship of soil type with landslide occurrence indicated that the Yellowish-brown sandy 

clay loams Figure 5 were the most prone to landslide with FR score of (3.92). The drainage density 

class 15.01 - 20.00 also indicated high proneness to landslides with FR (3.67) signifying the 

hydrological impact on landslide scars. Finally, class -1.282 - -0.425 of the Topographic 

Roughness Index (TRI) revealed high susceptibility to landslides. 
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Table 1: Frequency Ratio Model results for all conditioning factors under study 

 

S/N 
Conditioning factor 

Class No. pixel 

No. Landslides 

(Di) 

Area class 

km/sq (Ai) FR 

 

Normalized 

Difference Vegetation 

Index (NDVI) 

0.11 - 0.4 67968 8 10.62 0.58 

 0.41 - 0.5 91544 24 14.30 1.29 

1 0.51 - 0.6 106288 57 16.61 2.64 

 0.61 - 0.69 126260 28 19.73 1.09 

 0.7 - 0.81 197917 3 30.92 0.07 

 Total 589977 120 92.18  

 

Normalized 

Difference Moisture 

Index (NDMI) 

-0.37 - -0.05 49988 2 7.81 0.20 

2 -0.04 - 0.1 78779 23 12.31 1.44 

 0.11 - 0.21 139259 67 21.76 2.37 

 0.22 - 0.3 156533 20 24.46 0.63 

 0.31 - 0.61 165418 8 25.85 0.24 

 Total 589977 120 92.18  

 

Distance from 

streams (meters) 

< 25 235513 43 36.80 0.90 

 25.1 – 50 141507 24 22.11 0.83 

 50.1 – 100 152528 40 23.83 1.29 

3 100.1 – 150 47324 11 7.39 1.14 

 150.1 – 200 11044 2 1.73 0.89 

 200.1 – 250 1877 0 0.29 0.00 

 250.1 > 185 0 0.03 0.00 

 Total 589977 120 92.18  

 

Altitude in meters 

(a.s.l) 

1,288 - 1,500 60311 45 9.42 3.67 

 1,501 - 2,000 179852 69 28.10 1.89 

 2,001 - 2,500 126039 2 19.69 0.08 

4 2,501 - 3,000 118082 3 18.45 0.12 

 3,001 - 3,500 50068 1 7.82 0.10 

 3,501 - 4,000 50628 0 7.91 0.00 

 4,001 > 4997 0 0.78 0.00 

 Total 589977 120 92.18  

 

Stream Power Index 

(SPI) 

-32.1 - -0.94 68328 10 10.68 0.72 

 -0.93 - -0.26 18647 0 2.91 0.00 

 -0.25 - -0.03 1481 0 0.23 0.00 

 -0.02 - 0.43 169063 24 26.42 0.70 

5 0.44 - 0.89 128404 20 20.06 0.77 

 0.9 - 1.35 87985 19 13.75 1.06 

 1.36 - 2.04 70430 37 11.00 2.58 

 2.05 - 26.32 45640 10 7.13 1.08 

 
Total 589977 120 92.18  

 

Plan curvature 

-32.14 - -1.67 10715 1 1.67 0.46 

 -1.66 - -0.38 165134 44 25.80 1.31 

 -0.37 - 0.26 215723 39 33.71 0.89 

6 0.27 - 0.91 142843 21 22.32 0.72 
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S/N 
Conditioning factor 

Class No. pixel 

No. Landslides 

(Di) 

Area class 

km/sq (Ai) FR 

 0.92 - 3.48 54403 15 8.50 1.36 

 3.49 - 22.58 1160 0 0.18 0.00 

 Total 589977 120 92.18  

 

Profile curvature 

-21.175 - -2.14 4585 0 0.72 0.00 

7 -2.139 - -1.283 149887 17 23.42 0.56 

 -1.282 - -0.425 225381 44 35.22 0.96 

 -0.424 - 0.432 158544 37 24.77 1.15 

 0.433 - 1.29 49319 22 7.71 2.19 

 1.291 - 26.757 2262 0 0.35 0.00 

 Total 589978 120 92.18  

 

Aspect 

Northeast 14922 26 2.33 8.57 

 East 12035 3 1.88 1.23 

 Southeast 47282 14 7.39 1.46 

 South 87974 24 13.75 1.34 

8 Southwest 102282 15 15.98 0.72 

 West 116642 8 18.23 0.34 

 Northwest 137774 16 21.53 0.57 

 North 71066 14 11.10 0.97 

 Total 589977 120 92.18  

 

Slope gradient 

< 5 28402 2 4.44 0.35 

 5.1 – 10 69999 6 10.94 0.42 

 10.1 – 15 90094 11 14.08 0.60 

 15.1 – 20 95885 10 14.98 0.51 

9 20.1 – 25 87328 16 13.65 0.90 

 25.1 – 30 82408 37 12.88 2.21 

 30.1 – 35 60549 24 9.46 1.95 

 35.1 > 75312 14 11.77 0.91 

 Total 589977 120 92.18  

 

LULC 2020 

Shrub 4019 1 0.63 1.22 

 Agriculture 151710 75 23.70 2.43 

 Bushland 22704 0 3.55 0.00 

 Planted forest 50786 14 7.94 1.36 

 Built up 15914 8 2.49 2.47 

 Grassland 56888 17 8.89 1.47 

10 Tropical Forest 

High stocked 139349 2 21.77 0.07 

 Bare Surfaces and 

Impediment 49602 0 7.75 0.00 

 Topical forest Low 

stocked 99005 3 15.47 0.15 

 Total 589977 120 92.18  

 
Soil type 

Humose red sandy 

clay loams 304489 8 47.58 0.13 
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S/N 
Conditioning factor 

Class No. pixel 

No. Landslides 

(Di) 

Area class 

km/sq (Ai) FR 

11 Black humose 

sandy clay loam 113424 0 17.72 0.00 

 Yellowish brown 

sandy clay loams 135367 108 21.15 3.92 

 Red clay loams 

and sandy clay 

loams 36697 4 5.73 0.54 

 Total 589977 120 92.18  

 

Drainage Density 

<10 426308 59 66.61 0.68 

 10.01 - 15.00 100873 28 15.76 1.36 

12 15.01 - 20.00 44188 33 6.90 3.67 

 20.01 - 25.00 12601 0 1.97 0.00 

 25.01 > 6007 0 0.94 0.00 

 Total 589977 120 92.18  

 

Topographic 

Roughness Index 

(TRI) 

-21.175 - -2.14 11382 2 1.78 0.86 

 -2.139 - -1.283 16387 0 2.56 0.00 

 -1.282 - -0.425 103686 27 16.20 1.28 

13 -0.424 - 0.432 318840 81 49.82 1.25 

 0.433 - 1.29 112121 9 17.52 0.39 

 1.291 - 26.757 27562 1 4.31 0.18 

 Total 589977 120 92.18  

 

Distance from the 

road (km) 

< 0.05 49480 21 7.73 2.09 

 0.06 - 0.18 100150 51 15.65 2.50 

 0.19 - 0.51 83876 28 13.11 1.64 

14 0.52 - 1.00 76626 15 11.97 0.96 

 1.10 - 2.45 72647 3 11.35 0.20 

 2.46 - 3.98 70185 2 10.97 0.14 

 3.99 - 6.15 68384 0 10.69 0.00 

 6.16 > 68629 0 10.72 0.00 

 Total 589977 120 92.18  

 

Population Density 

(sq. km) 

22 – 250 233529 9 36.49 0.19 

 251 - 1,000 201114 11 31.42 0.27 

15 1,001 - 1,500 102850 99 16.07 4.73 

 1,501 - 2,500 52369 1 8.18 0.09 

 2,501 - 3,529 115 0 0.02 0.00 

 Total 589977 120 92.18  
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Figure 5: shows exposed Yellowish-brown sandy clay loams of 2 shallow landslides in Tsume 

micro-catchment 

    

 

 

(b) Shallow landslide in Eucalyptus woodlot  Bukalasi  (a) Shallow landslide in a banana garden, Bukalasi  
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Figure 6: Selected conditioning factor maps for landslide susceptibility maps 
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4.1.1 Factor importance and contribution to landslide occurrence 

The overall importance of each pre-conditioning factor to landslide occurrence was assessed and 

presented using the calculated entropy weight and entropy percentage weights. The results are 

summarised in Table 2. From the analysis population density emerged as the highest influencing 

factor contributing 0.12 (12.05%) entropy percentage weight followed by soil type (10.86%), 

topographic randomness index (8.91%) and Altitude (8.58%). Surprisingly slope (3.40%) was 

found to be the least contributor to landslide occurrence.  

Table 2: Entropy score of landslide conditioning factors 

Conditioning factor Category 

Calculated 

Entropy 

Weight (Wj) 

Percentage 

weight/contribution 

Population density 2014 Anthropogenic 0.12 12.05 

Soil type Soil 0.11 10.86 

Topographic Roughness Index (TRI) Topographic 0.09 8.91 

Altitude Topographic 0.09 8.58 

Stream Density Hydrological 0.09 8.57 

Distance from road Anthropogenic 0.07 7.33 

Profile curvature Topographic 0.07 6.76 

NDMI Hydrological 0.06 6.32 

NDVI Vegetation 0.06 5.89 

Aspect Topographic 0.05 4.83 

Plan curvature Topographic 0.05 4.55 

Distance from stream Hydrological 0.04 4.23 

LULC 2020 Anthropogenic 0.04 3.87 

Stream Power Index Hydrological 0.04 3.86 

Slope degrees  Topographic 0.03 3.40 

Total  1.00 100.00 

 

4.1.2 Tsume landslide characterization 

Figure 7 illustrates the spatial landslide susceptibility of Tsume micro catchment. Landslide 

susceptibility in Tsume micro catchment was characterized as very low 1.79 km² (1.93%), low 

30.68 km² (32.96%), moderate 32.63 km² (35.05%), high 23.18 km² (24.90%) and very high 4.82 

km² (5.17%). The accuracy of the LSM map was tested using ROC method and the hybrid model 

prevailed as a better predictor with (AUC = 0.914) than single bivariate statistical models. The 

receive operating curve (ROC) is presented in Figure 8. 
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Figure 7: Landslide susceptibility map from the hybrid model 

 

Figure 8: ROC for model validation 
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4.2  Tree distribution analysis 

A total of 129 trees were mapped from 12 selected landslide scars and their distribution per site is 

presented in Figure 9. Of the total trees mapped, Eucalyptus Spp (28%) was the most abundant, 

followed by Markhamia lutea (23%), Cordia africana 19 (15%), Grevillea robusta (14%), Albizia 

coriaria (12%) and Croton macrostachyus (8%). Species dispersion and direction was analyzed 

using standard deviation ellipse method and results are presented in Figure 10. From the analysis, 

Croton macrostachyus and Markhamia lutea were highly dispersed than any other species in the 

study area. Albizia coriaria was the most localized in the downstream. Croton macrostachyus was 

more dispersed to the western direction while Markhamia lutea was at the centre of the axis. 

Albizia coriaria and Eucalyptus Spp was dispersed towards the Southwestern direction while 

Grevillea robusta and Cordia africana to Northwest.  The Pearson’s correlation method was 

undertaken to study relationship between landslide size and tree diameter at breast height (DBH). 

A weak negative correlation (r = -0.20 < 0.01) was observed between DBH and landslide size.   

 

Figure 9: Tree distribution in 12 sites 

 



 

35 
 

 

Figure 10: Standard deviation Ellipse showing dispersion and direction of selected tree species 

4.3 Root characteristics for slope stability 

4.3.1 Tensile strength analysis  

A one-way analysis of variance (ANOVA) was performed to compare root tensile strength of six 

(6) selected agroforestry tree species as a characteristic for consideration in adoption for slope 

stability. The results indicated that all species means were significantly different from each other 

with (F(5, 573) = [18.161], p < 0.001). However, Grevillea robusta, Albizia coriaria, and 

Markhama lutea had the highest tensile strength with average weight of 3.02±1.217kg/mm², 

2.53±1.382kg/mm², and 2.28±1.01kg/mm² consecutively (Table 3). On the other hand, Croton 

macrostachyus (1.78±1.167)kg/mm² and Cordia africana (1.69±1.153)kg/mm² had the least 

tensile strength.  A scheffe post hoc criterion for significance confirmed variability within species 

as follows. The root tensile strength of Albizia coriaria (2.206±0.832) was significantly different 

from Grevillea robusta (p < 0.001) and Markhamia lutea (p < 0.001). Similarly, Cordia africana 

(3.065±0.872) was significantly different from Markhamia lutea (5.096±0.358; p < 0.001). A same 

pairwise comparison also revealed that Croton macrostachyus (2.143±0.683) was significantly 

different from Eucalyptus spp (p = 0.049), Grevillea robusta (p < 0.001), and Markhamia lutea (p 
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< 0.001).  Finally, Eucalyptus spp (3.457±0.144) significantly (p = 0.002) differed from 

Markhamia lutea. The index of root binding was highest for Albizia coriaria (81.31), and lowest 

for Markhamia lutea (47.84) as presented in Table 3.  

Table 3: Mean and standard deviation rapture weight (kg) of selected agroforestry tree species 

Species N 

Mean 

weight 

(kg) Std 

Mean 

𝑇𝑟(kg/sq.mm) 

 

Std 

 

IRB 

Albizia coriaria 98 2.21 0.832 2.53 1.382 81.31 

Cordia africana 105 3.10 0.872 1.69 1.153 69.90 

Croton macrostachyus 87 2.14 0.683 1.78 1.167 51.69 

Eucalyptus spp 99 3.50 0.144 1.80 0.926 58.87 

Grevillea robusta 85 4.22 0.500 3.02 1.217 57.44 

Markhamia lutea 105 5.10 0.358 2.28 1.013 47.84 

 

4.3.2 Root diameter verses tensile strength  

As shown in Figure 11, all species indicated an inverse relationship between tensile strength and 

root diameter. Sharp slopes were observed among Cordia africana, Grevillea robusta, Eucalyptus 

Spp. and Markhamia lutea.  
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Figure 11: Root tensile strength-diameter relationship 

4.3.3 Shear strength of selected agroforestry  

Figure 12 presents average shear strength of selected agroforestry tree species under study. The 

best performing species in terms of shear strength was Albizia coriaria with average shear strength 

(52.46±10.24) kpa followed by Markhamia lutea (50.70±15.47) kpa. The worst performing 

species in shear strength was Eucalyptus spp. with average shear (46.75±12.92) kpa. However, the 

results did not differ significantly. 

 
Figure 12: Box plot showing average shear strength of selected agroforestry tree species 

 

4.3.4 Soil texture analysis for selected trees 

Soil texture results as presented in figure 13 indicate average highest clay content (27.8%) in soil 

samples picked near Markhamia lutea, sand (33.6%) in Eucalyptus Spp and silt (54.0%) in Albizia 

coriaria soil samples.  
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Figure 13: Percentage soil texture 
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CHAPTER FIVE 

DISCUSSION OF RESULTS  

5.1 Landslide risk characterization of Tsume micro-catchment  

Landslides occur as a result of several conditioning and trigger factors. However, choosing the 

best for an event presents a challenge of its own. Moreover, several arguments have been raised 

on the use of single models to predict landslide susceptibility. The augments originate from the 

predictive capacity and reliability of each model given the complex nature of landslides. For 

example frequency ratio models have gained high reliability status because of their high predictive 

capacity as stressed by  Chen et al., (2020). In the current study a hybrid model comprising of 

frequency ratio (FR), index of entropy (IOE) and weighted overlay (WO) was used to predict 

landslides in Tsume micro catchment.  The influence of 15 selected conditioning factors to 

landslide formation was assessed. 

From the hybrid model, NDVI explained 5.89% of Tsume landslide susceptibility Map. The FR 

results indicated that a decline in NDVI resulted in increase of landslide frequency in an area while 

a NDVI of <5 presented more problems. An increase in NDVI implied an increase in vegetation 

cover and health conditions and arguably the vegetation cover control by roots and canopy.  These 

results coincided with the land use/cover findings where low FR (0.07) was recorded in Tropical 

Forest High stocked unlike in Built up area and the Agriculture where the highest FR were 

observed. Overall contribution of LULC to landslide susceptibility was 3.87%. High forest cover 

negatively affected landslide formation, which is in agreement with Preti, (2013) and FAO (2010). 

This is explained by the root system that cause a negative feedback.  Whereas, high FR in 

agriculture and built area signified the positive human interactions with the biophysical 

environment resulting into positive feedback. Similar findings have been reported by  Mugagga et 

al.  (2012) where LULC was considered as a trigger factor. In their study  high prevalence of 

landslides was observed in degraded areas as well. Singh et al., (2021) also found landslide 

concentration (95%) in degraded fields characterized by agriculture and built up. Recently, Mande 

et al., (2022) revealed that most landslides are concentrated in agricultural fields and attributed the 

phenomenon to over cultivation and modification of the environment.  
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The TRI and NDMI also greatly contributed to the landslide susceptibility of Tsume micro-

catchment while slope gradient least contributed. The FR results of the above three (3) parameters 

showed similar trend where a unit increase in a parameter value  would increase the prevalence of 

landslides up to a certain peak and then decreases (Razifard et al.,  2019). TRI results were in line 

with Nakileza & Nedala (2020) findings who reported high landslide concentration from class 0.15 

- 0.31 to 0.40 - 0.5 map units. Suyeda & Setiawan, (2022) have used NDMI as an alternative 

method for analyzing ground water content of a soil. Marino et al., (2020) stressed the importance 

of soil moisture especially the antecedent soil moisture to landslide occurrence and concluded that 

this is ideal for improving prediction.  In 2019 (Razifard et al., 2019) reported a strong relationship 

between soil moisture and landslide occurrence in Khaje, East Azerbaijan. In regards to slope 

gradient, studies by Nakileza & Nedala, (2020) and  Kornejady et al., (2019)  depicted similar  

findings  that  landslide concentration is high on slopes between (15˚ – 25˚). However, on contrary 

slope gradient was the major influencing factor for (Nakileza & Nedala, 2020) unlike in this study 

where it is the least influential. The scale of analysis could be one of the reasons for the low 

contribution of slope gradient to landslide formation in this particular catchment. Moreover, it 

should also be noted that earlier researchers on the subject (e.g. Mande et al. 2022; Nakileza & 

Nedala, 2020; Broeckx et al., 2019; OPM, 2016; Staudt et al., 2014) used low spatial resolution 

data (30 and 90) meters which presents some level of generalization during prediction. Also, 

dominance of relatively gentle to moderately gentle slopes in the study area could account for the 

observed differences. However, these arguments are subject to further analysis in different sub 

catchments and catchments.   

Distance from streams and road networks contributed 4.23% and 7.33% consecutively to the 

overall LSM. Both parameters presented an inverse relationship similar to other findings (Devkota 

et al., 2013). As distance increased, landslide occurrence decreased signifying the importance of 

proximity to streams and roads. This implies that opening of more roads on steep slopes would 

obviously increase the risk of landslides in the micro catchment. McAdoo et al., (2018) studied 

similar events and found a strong correlation between landslide occurrence and road network in 

Nepal.  In regard to stream distance, studies by Kavzoglu et al., (2015) have found that distance 

from streams is very important factor of consideration because it highly contributes to landsliding. 

This is attributed to the river erosion activities Devkota et al., (2013) that affect slope stability and 

increase soil moisture at points of contact Jaafari et al., (2014). The process is worsened when the 
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area is characterized by high drainage density greater than 15. In this study however, landslide 

concentration was observed in drainage class 15.01 to 20.00 with limited landslides above it. Its 

overall importance was 8.57% thus, making it the 5th most important influencing parameter. Gentle 

slopes (<5˚) in the low lands could account for high drainage density.   

Altitude revealed that most landslides were common between altitudinal heights above 1,200 and 

1,500 meters above sea level. The overall contribution of altitude to landslide susceptibility was 

siginificant thus assuming the 4th position. These results can be explained by high rainfall 

(Nakileza & Nedala, 2020) that attracts intensive cultivation in these areas thus undermining slope 

stability. Stream power index (SPI) is a measure of erosive power of water flow based on the 

assumption that discharge is proportional to a particular catchment (Thongley & Vansarochana, 

2021; Duman et al., 2006). In this study statistical results of SPI indicated a low overall influence. 

FR results revealed that landslide concentration increased with increase in erosive power of the 

stream. Moreover, a comparison between SPI  and slope maps indicate a positive relationship 

between the two. Thongley & Vansarochana, (2021) reported similar trends in their study and 

concluded that SPI significantly influence landslides.  

The plan and profile curvatures revealed a moderate influence o on landslide susceptibility thus 

assuming the 11th and 7th positions consecutively.  Positive values of the plan curvature indicated 

that the sideward convex slopes are more prone to landslides than concave slopes. Likewise, the 

upward concave slopes of the profile curvature were more problematic than to the convex slopes. 

Similar finding have been reported by Mande et al. (2022) in the same catchment. However, in 

contrary Nakileza & Nedala (2020) found the negative curvature slopes as the most prone in the 

upper catchment that includes Tsume. Such differences depict unique and complex characteristics 

of landslides and therefore call for micro catchment level analysis for a better understanding. 

Aspect is another important pre-conditioning factor of landslide assessment in this research put 

under consideration. The FR results indicated proneness of Northeast, East and South east facing 

slopes to landslides with low overall importance putting this parameter in the 10th position. These 

results are in agreement with researchers such as  (Thongley & Vansarochana, 2021;  Nakileza & 

Nedala, 2020) who attributed it to high rainfall received on those slopes.  

High population density (1st position) emerged as the most influential factor of Tsume landslide 

susceptibility with areas above 1000 people/km² being the most problematic.  High population 
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density is highly correlated to land use change and system conversion. Studies (e.g. Van Eynde et 

al., 2017; Dierickx, 2014; Knapen et al., 2006) have indicated  that a high population density of 

400 to 1300 people /km2 existed in Bududa district as of 2002 and 2011. Galabuzi et al., (2021) 

estimated about 1.5million people in entire Elgon region with a population density of 400 to 800 

people/km². Recently UBOS (2017) in a National Housing and Population Census (NHPC) report 

indicated a total population of 210,173 people with youth (<17 years) making up the majority. This 

high population density reveals the future risk of land scarcity and over cultivation for subsistence 

on vulnerable slopes.  

The relationship of soil type with landslide occurrence indicated that the Yellowish-brown sandy 

clay loams are the most prone to landslides. The overall contribution of soil to landslide 

susceptibility like population density was very significant thus assuming the second place of 

importance. A study by Knapen et al. (2006) reported high silt clay soil (52% clay, B2t) content 

predisposition on coarser sandy silt loam (6% clay, A3/E3) as a factor of concern impairing water 

movement in Manafwa watershed thus landslide. A later study by Claessens et al, (2007) 

confirmed that Bukhalasi suffered several shallow landslides as a result of a distinct boundary 

between the soil and the underlying bed rock. This abrupt transition between the bedrock and the 

soil acted as a shear plane during heavy rainfall. Similar results were noted by Kitutu et al. (2009) 

who further concluded that soil type had no influence on landslides but rather texture of which 

kaolinite and illite clay were significant.  Nakileza et al., (2017) observed and concluded that high 

clay rich soils have a high potential of shearing in wet season. Their findings were similar to 

(Makabayi et al., 2021) who reported a 30% clay content in the Bududa soils. However contrary 

to this study, (Makabayi et al., 2021) reported insignificant influence by soil type and rather 

attributed the latter to soil texture.  

The accuracy of the LSM map revealed very good prediction rate of the proposed hybrid model 

with (AUC = 0.91). Thongley & Vansarochana, (2021) noted that for success rate of any model 

that falls under AUC (0.7 to 0.8) is a good predictor and above (>0.8) is very good predictor.  In 

the current study the very good success rate of the proposed hybrid model was a leverage from 

two models FR and IoE recommended by (Jaafari et al., 2014) as good models for landslide 

modelling.  
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5.2 Landslides and tree distribution  

The analysis of the relationship between landslides and tree distribution revealed an inverse 

relationship between landslide scar size and DBH. The results imply that presence of trees reduce 

landslide risk in an area and DBH is a very important factor. A study by Nelson et al., (2015) 

indicated that DBH (< 25 and > 60 cm) do not guarantee slope stability due to low factor of safety 

(< 1) while those within do. Yang et al., (2017) concluded that large trees (DBH > 20cm) reduce 

landslide risk for as far as 10m distance from the tree base. They further pointed out that much as 

large DBH may increase surcharge pressure downslope to weight of trunks, the net effect of large 

trees on slope stability is positive. The latter is true for lower landslide susceptibility in the 

Southwest direction of the LSM (high rather than very high) where Albizia coriaria was highly 

concentrated. The high concentration was due to high adoption by farmers in their coffee and 

banana systems as a result of promotion by Shunya Yettana CBO (Nakileza et al., 2017) and other 

players.  

5.3 Root characteristics for landslide control 

The study considered root characteristics as a feature for tree adoption to control landslides. A 

one-way ANOVA indicated high variability of tensile strength among species. The variability is 

as a result of environmental condition, species and age (Nyambane & Kinyua , 2011;  Schmidt et 

al., 2001). Results also showed that Grevillea robusta, Albizia coriaria, and Markhamia lutea were 

the best performing trees with highest tensile strength. Strikingly Cordia africana was among the 

worst performers yet it had been widely promoted to farmers among the indigenous species for 

landslide control. According to Mugagga et al. (2015) C. africana is among good carbon sequesters 

thus the reason for its promotion. Nakileza & Tushabe, (2018) associated their adoption to tap root 

system that penetrate into deeper layers of the soil. Galabuzi et al., (2021) on the other side found 

that Cordia africana adoption was highly linked to good shed, firewood and timber. However, in 

contrary Graham et al., (2021) reported a low adoption of indigenous trees particularly Cordia 

africana and ficus spp. against exotic tree species such as Eucalyptus and Grevilia spp. among 

community.  

Comparison among species indicated a significant difference between Albizia coriaria and 

Grevillea robusta (p < 0.001), Albizia coriaria and Markhamia lutea (p < 0.001); Cordia africana 

and Markhamia lutea (p < 0.001); Croton macrostachyus and Eucalyptus spp (p = 0.049); 

Grevillea robusta (p < 0.001) and Markhamia lutea (p < 0.001); and Eucalyptus spp and 
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Markhamia lutea with (p = 0.002). A study by Hairiah et al., (2020) and Comino & Marengo, 

(2010) suggested that fibre and lignin content are factors that can explain tensile strength variations 

among species. For instance, Hairiah et al., (2020) found that lignin explained 70% of variations 

among species. A study by Senthamaraikannan et al., (2019) reported a high cellulose content 

(64.54 wt%) and low microfibrile angle in Albizia amara barks which offers high tensile strength 

(640±13.4 Mpa).  They further reported low fibre density, a feature which could reduce surcharge 

weight on slope direction. However, an in-depth study is required to confirm this factor. Similarly 

Gopinath et al., (2021) studied Albizia saman cellulosic fibre content and tensile strength. Their 

results reported a 60.76 wt% cellulose, slightly lower than A. amara and a high tensile strength 

(381 – 1092 Mpa). Recently Madhu et al., (2022) reported (55.83 wt%) cellulose and tensile 

strength (483.40±18 Mpa) for Albizia julibrissin.  The tensile strength results by Madhu et al., 

(2022); Gopinath et al., (2021); and Senthamaraikannan et al., (2019) were significantly higher 

than the current study because their test were conducted on dry samples. Also, the machine used 

for testing their tensile strength were highly developed compared to the current study. Of recent 

Hairiah et al., (2020) found a positive relationship between plant root nitrogen and tensile strength. 

These research findings further suggested that Albizia coriaria and Cordia africana had more 

advantage of holding soil unlike Markhamia lutea.  According to Harahap et al., (2018) and 

Mulyono et al., (2018) trees with high IRB are well suited for slope stability than those with low 

IRB. During root extraction in the field, it was observed that Markhamia lutea had fewer roots 

compared to any other species and this could contribute to low IRB. Also, trunk volume was lowest 

compared to other trees which could have contributed to the observed results.  

Finally shear strength results suggests Albizia coriaria  as the best tree for slope stability followed 

by Markhamia lutea although the results were not significant. On the contrary Eucalyptus Spp. 

was the worst performing tree with lowest mean shear strength yet the most preferred and abundant 

tree due to its fast growing characteristics (Buyinza et al., 2021) and economic value Graham et 

al., (2021) and Nakileza et al., (2017). High silt and clay content recorded in soil samples collected 

near Albizia coriaria and Markhamia lutea would somehow account for the observed high shear 

strength in the two species while high sand content would explain the low shear strength in soil 

samples near Eucalyptus spp. This therefore suggests that not only roots affect shear strength but 

also other factors. According to (Hairiah et al., 2020) soil shear strength is also highly dependent 

on soil texture.  
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATION 

6.1 Conclusion  

The current study aimed at improving landslide prediction using hybrid model and investigating 

how the knowledge of plant characteristics (DBH, tensile strength, index of root binding and soil 

shear strength) could be harnessed to control landslide risk in Tsume micro catchment. The 

research process started by proposing a hybrid model which evaluated the importance of each 

landslide causative factor. Then finally evaluation of the selected tree root characteristics as key 

features of tree adoption. The following is a summary of the conclusions emerging from this study:  

a. Hybridization of independent/single landslide susceptibility models significantly improves 

landslide mapping and prediction accuracy. The current study integrated three models of low 

accuracy (frequency ratio, Index of entropy and weighted overlay) and gained very high 

predictive accuracy ROC (AUC =0.91). The model also revealed that population density 

(12.05%) and soil type (10.86%) were the most important factors which was contrary to other 

researcher findings.  

b. The presence of trees reduces landslide risk in an area and DBH is a very important guiding 

factor. The relationship revealed that as DBH increase the landslide risk reduces and vice versa.  

c. The tree species in this study namely Grevillea robusta, Albizia coriaria, and Markhamia lutea 

emerged as best performers in terms of root tensile strength and soil shear strength hence their 

suitability for enhancing slope stability. Additionally, Albizia coriaria and Cordia africana 

have more associated benefits of holding soil particles together unlike Markhamia lutea that 

has low index of root binding. On the contrary Eucalyptus Spp., which is widely favoured in 

the region for its rapid growth was the worst performer with very low shear strength. Therefore, 

careful consideration of the tree characteristics is essential during promotion campaigns for 

slope stability in fragile environments.  

6.2 Recommendations 

The recommendations below are based on the study findings; 

a) The hybrid model emerged as a very good landslide predictor in Tsume micro-catchment 

thus highly recommended for micro scale analysis. However, to reduce any reasonable 

doubts and increase its applicability in landslide predication across the country, more 
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studies at different scale of analysis in different catchments are required. The model’s high 

precision in landslide risk mapping demonstrates support to any policy action through 

population exposure control such as family planning, relocation and slope soil stability by 

tree planting. 

b) The tree planting programs and campaigns need to prioritize mixed planting of Albizia 

coriria., Grevellia robusta and Markhamia lutea on farm plots due to their high tensile 

strength, IRB and shear strength characteristics as observed in this research. The trees need 

to be allowed to grow up to a certain size (DBH ≥ 20cm) for full realization of the slope 

stability characteristics before harvest. However, for sustainability of this policy 

recommendation, a Regulatory Impact Assessment (RIA) towards establishment of an 

Effective Landslide Mitigation and Resilience Plan as part of DRR strategy aimed at 

promoting the above tree species by OPM to reduce disaster risk in mountainous areas is 

required.  

6.3 suggestion for future research 

➢ An in-depth tensile strength analysis using a modern tensile machine of higher capacity 

is highly recommended to test bigger roots for proper comparison of the results so as 

to increase confidence in the findings. This is because the current study utilized a 

simple rudimentary tensile machine which was limited to root diameter (≤ 6mm).  

➢ Also, a similar investigation on other indigenous tree species, fruit trees, shrubs and 

grasses would be beneficial for widening the scope of other species variates with good 

slope stabilization characteristics to farmers.  

➢ Finally, further research is required to test interactions of tree species age on shear 

strength and slope to identify best tree combinations and age with optimum slope 

stability characteristics on different slope angles. This kind of sensitivity analysis was 

not possible in this study due to limitation by equipment and failure to identify tree age 

in situ.  
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APPENDICES 

Appendix 1:  Reconnaissance study  

       

 

 

 

 

c) FGD with teachers and parents at Bundesi Primary School (In attendance was Prof. Mugagga in white T-shirt 

a) Field visit in Bundesi village with Prof. Mugagga 

(left), and Dr Nakileza (middle)  
b) Inspection of exposed Eucalyptus spp. tree roots in 

Ibookho village 
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Appendix 2: Root sample cleaning and trimming 

     

 

 

 

 

 

Trimming of washed Markhamia lutea root samples to 30cm for easy storage and loading 
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Appendix 3: Tensile machine  
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Appendix 4: Calibration certificate 
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Appendix 5: Tree root extraction  

        

     

Extracted root from Cordia africana Digging of Cordia africana roots 

Back filling of soil  Root extraction from Albiza coriaria 
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Appendix 6: Tree distribution mapping 
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  Appendix 7: Soil sampling for laboratory shear strength analysis 

     

 

Soil samples for shear strength analysis 

Composite samples for soil texture analysis 

Field soil sample collection 


