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Abstract 

We consider an m-th order constant coefficient locally Fuchsian ordinary 
differential equation at the origin 

( ( ) ( ) ( )) ( ) ,0000 01
1

1 =+∇++∇+∇ −
− xyrrr m

m
m …  

where dx
dxx =∇∈ ,R  and prove that there exists generalized solutions to 

this equation with support on the positive halfline. A long the way, using our 
method, we establish similar conditions for existence of generalized solutions for 
a specialized ordinary differential equation proposed in [1]. 
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1. Introduction 

A general ordinary differential equation on the real line with real 
polynomial coefficients can be expressed in the form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,001
3

3
1

1 =+′++++ −
−

−
− yxayxayxayxayxa n

n
n

n
n

n "  

(1.1) 

where ( ) { }nixai ,,1,0, "∈∀  are functions of a single variable on the 

real line. The solutions to (1.1) depend on whether the leading polynomial 
( )xan  has zeros along the real line [3]. If the leading polynomial ( )xan  

has no zeros along the real line (the elliptic case), then there are a 
number of methods to solve such ODE’s and the solutions consist of real-
analytic functions (classical solutions) that is functions whose derivatives 
up to and including the highest order n exist. Such solutions have been 
studied and could, for example, be found in [9], [3] or any other book on 
ordinary differential equations. Studies on the existence of polynomial 
solutions has been carried out by say [2] where the authors propose a 
new approach for investigating polynomial solutions based on elementary 
linear algebra. Laradji [14] considers a general n-th order linear ODE 
and provides the necessary and sufficient conditions for which it has a 
general polynomial solution. For the special case of Fuchsian ordinary 
differential equations the classical functions exist in general [3]. 
However, if the leading term has zeros on the real line (the non-elliptic 
case), then the ordinary differential equation (1.1) may have singularities 
and such classical solutions may not exist [19]. Generalized functions 
that is both distributional (singular support distributions) and weak 
functions exist as solutions in this particular case, for example, in [10], 
[11]. 
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For the case of weak solutions, Wiener & Shah [20], considered the 
ordinary differential equation; 

( ) ( )( ) ,0
0

=−

=
∑ txta in

i

n

i
  (1.2) 

with the coefficients ( ) inM
i Cta −+∈  in the neighbourhood of ,0=t  

stated and proved specific conditions under which one would obtain non-
trivial distribution solutions or the m-th order distribution solutions 
concentrated at 0=t  assuming that the Equation (1.2) has a regular 
singularity at the origin. Kananthai [13] considered the ordinary 
differential equation of the form, 

( ) ( )( ) ( )( ) ( ) ,01 =++= − ttytmyttyyP nn   (1.3) 

where m is any integer and 2≥n  for ( )∞−∞∈ ,t  and proved by the use 

of the Laplace transform that the values of m determine whether the 
solutions to (1.3) are classical or generalized solutions with halfline 
support on .R  Other results using the Laplace transform include [18] and 
[12]. Mandai [15] proves the existence of distribution solutions for every 
Fuchsian partial differential operator in the sense of Baouendi-Goulaouic 
with weight .k−m  Amphon [1] using the Laplace transform proposed 
generalized solutions to a certain fourth order ODE, 

( ) ( ) ( ) ( ) ( ) ,01
2

2
3

3
44

4 =+′+′′+′′′+ xmyxyxaxyxaxyxayxa   (1.4) 

where Z∈m  and R∈x  that depend on the values of m for the special 
case .14321 ==== aaaa  In this paper, we propose generalized 

solutions to locally Fuchsian ODE’s for general values of the constants 
albeit using the theory on existence of distribution solutions with support 
on the positive halfline. This procedure involves the construction of 
distribitions whose well definedness is proved in [6], [4], and [5]. 
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2. Preliminaries 

2.1. Locally Fuchsian differential equations 

Let P denote the operator on the left hand side of (1.1). If the 
polynomial coefficient of the highest order derivative has some zeros on 
the real line with or without multiplicities then at each of the real zeros 
one can re-write (1.1) in the form that is herein reffered to as locally 
Fuchsian. A similar definition exists in [17]. 

Definition 1. The operator P is locally Fuchsian at a real zero ,ax =  
if it can be written in the form 

( ) ( ) ( ),01
1

1 xrxrxrP m
m

m +∇++∇+∇= −
− …   (2.1) 

where { ( )} { }1,,2,1,0 −∈∀ mxr …νν  are germs of holomorphic functions 

at ax =  and ( ) .dx
dax −=∇  

Remark 1. P in (2.1) is said to be locally Fuchsian on the real line if 
it is locally Fuchsian at every zero of the coefficient of the highest order 
derivative ( ).xan  

Let P be a differential operator as defined in (2.1), locally Fuchsian at 
a zero .ax =  We shall assume without loss of generality that .0=a  
Now, let 

( ) ( ) ( )000 01
1

1 rrrP m
m

m +∇++∇+∇= −
− …   (2.2) 

represent a constant coefficient locally Fuchsian differential operator at 
the origin. 

By the Fundamental theorem of algebra, we can re-write (2.2) as 

( ) ,ν
ν

tP α−∇= ∏  

where { }να  is a set of distinct complex numbers and each νt  represents 

the multiplicity of a root and .21 mttt =+++ k…  
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Let D be a small open disk of radius δ  centered at the origin. Since 
every ( )0νr  is constant then it is holomorphic in D. In the simply 

connected set [ ),,0\ δ=∗ DD  for each pair ( )j,ν  with 10 −≤≤ νtj  
there exists single valued branches of multivalued analytic functions of 
the form 

( ) ( ) .log,
j

j xxx ⋅=ρ α
α

ν
ν   (2.3) 

These functions are the so-called Nilsson class functions and the 
logarithmic term comes in when there are multiplicities ( )1>νt  of the 
zero .να  With this notations we give a result on the general properties of 
the ∇  operator, we give a well known classical result about this solutions 
that can be found in [9] and give here below a proof as it is restated for 
the purpose of our results in this paper. 

Theorem 1. The solution set { ( ) ( ) }0: =∈ ∗ fPDf O  with P as in 
(2.2) is an m-dimensional vector space which has a basis consisting of 
functions of the form 

( ) .0:1: 1, −α ≤≤≤≤ρ ννν tjxj k  

Proof. We first show that the functions ( ) ( ) j
j xxx log., ν

ν
α

α =ρ  are 

solutions. The action of each ( )να−∇  on (2.3) gives, 

( ) ( ) ( ).1,, xjx jj −αα ρ=ρα−∇ ννν  

If ,0=j  then ναx  is a solution. But if ,0≠j  then for each νt  we have 
that, 

( ) ( ) ( ) ( ( ) ( ) ,011 ,, =ρ−−−=ρα−∇ −αα xtjjjx tjj
t

ννν
ν

νν …  

thus the functions ( )xj,ναρ  are solutions to ( ) 0=fP  since the operator 

P is composed of only such products. What remains is to prove that the 

functions are linearly independent. This means that if ,0
1

=∑
=

ii
m

i
fc  then 

.,0 ici ∀=  We consider two general forms, 
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(a) Suppose there are no logarithmic functions in the solutions 
( ).0=j  This occurs when all s,iα  are distinct and the m solutions are 

the individual solutions, .,,, 21 mxxx ααα …  Taking the action of 1α−∇  

on ( ),, xjναρ  we have 

( ) ( ) ( ) 01133122 32 =α−α++α−α+α−α ααα mxcxcxc mm…   (2.4) 

(2.4) is holds true only if 032 ==== mccc …  since all the s,iα  are 

distinct. Choosing another factor of P yields another set of coefficients 
being zero hence all the s,

ic  are zero. 

(b) Assume without loss of generality that, at least one of the factors 

( )iα  is repeated. The solution set will be .log1
1

1 











+ αα
−

=
∑ xxcxc mi

m

i
i  The 

action of P with different factors as in (a) gives that all s,
ic  are zero thus 

the set of solutions is linearly independent. Thereby forming an m 
dimensional basis for the solution space to P. 

2.2. Boundary value distributions ( )Db  on the real line 

We state in this subsection a necessary condition for the existence of 
a boundary value distribution attached to an analytic function ( )zf  as 

one approaches the real axis locally from the two half planes, upper +H  

and lower ,−H  respectively. 

If ( )zf  is an analytic function defined in the complex plane in a 

domain near the real axis such as the open rectangle defined by; 

( ){ },0:0:, byaxyx <<<<  

where a and b are positive finite real numbers near the origin, then it is 
said to have moderate or temperate growth as one approaches the real 
axis if for each compact subinterval β≤≤α x  of ( )ba,  there exists some 

integer 0>N  and a constant C such that 
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( ) .NyCiyxf −⋅≤+   (2.5) 

This moderate growth (2.5) is a necessary and sufficient condition for the 
complex valued function ( )zf  to have a boundary value ( )0ixf ±  given 

by a distribution ( )fµ  defined on the real axis by the limit 

( ) ( ) ( ) ( ) ( ).,0:lim0 0
00

aCxgdxixfxgixf
a

∞
→

∈±=± ∫ 


  (2.6) 

Theorem 3.1.13 in [8]. 

Definition 1. The limit integral in (2.6) yields a linear functional on 
test functions which give a distribution denoted by ( ),fb  called the 

boundary value distribution of the analytic function ( ).zf  

2.3. Distributions with compact support and their Cauchy 
transform 

Let ,Db∈µ  be the space of boundary value distributions with 

compact support on the closed subset [ ]1,0  of the real t-line (µ  could be a 

singular distribution). If z is fixed then the function 

,1
tzt

−
6  

belongs to the class of ( )R∞C  functions on the real t-line. 

Definition 2. The Cauchy transform of µ  denoted by ( )zµC  is 

defined by the action of µ  on a ∞C  function .1
tz −

 This function is 

holomorphic everywhere in the complex z-plane except on [ ]1,0  and is 

defined by 

( ) [ ].1,0\,1 C∈>
−

<µ=µ ztzzC  
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The Cauchy transform by definition is an analytic function in [ ].1,0\C  

The Cauchy transform satisfies the moderate growth as we approach the 

real axis. If ( ) ( ),0 R∞∈ Cxf  then for every Cauchy transform of a 

boundary value distribution ( ),, zµµ C  there exists two boundary value 

distributions, ( )0ix +µC  and ( )0ix −µC  defined by 

( ) ( ) ,1lim0
0

dxxfitxfix
x

>
+−

<µ>=<+ ∫ ∈→µ  R
C  (2.7) 

and 

( ) ( ) .1lim0
0

dxxfitxfix
x

>
−−

<µ>=<− ∫ ∈→µ  R
C  (2.8) 

Lemma 1. Given that Db∈µ  with support on the interval [ ]1,0  

including the case of singular support distributions, then the boundary 
value distributions of its Cauchy transform ( )zµC  satisfies the equation 

( ) { ( ) ( ) },002 ><−−><+
π

=µ µµ fixfixif CC  

where ( ) ( ).0 R∞∈ Cxf  

Proof. See [16].  

Remark 2. Lemma 1 shows that we can recover a distribution with 
compact support (singular support) via the boundary values of the 
Cauchy transform ( ).zµC  This also indicates that if a function of a 

complex variable that has moderate growth as one approaches the real 
line defines a boundary value distribution and extends as a distribution 
to the points of singularities with compact support at those points. The 
theory on boundary value distributions can also be reviewed in [8], [16], [7]. 
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2.4. The boundary value distributions of the analytic function 

( ) ,zzf α=  where { } N∈−=α kkk ,,  

The function ( ) ,α= zzf  where z is a complex number ,iyxz +=  

defined in +RC \  as ,log zeα  where log z is real for +∈ Rz  has 

boundary values ( )α+ 0ix  as one approaches the real axis from the upper 

half plane and respectively ( )α− 0ix  from the lower half plane. If 

( ) ,0>αRe  then the functions ( )α± 0ix  are both entire in the complex     

z-plane. However, when α  is a negative integer, k−  for ,N∈k  then the 

boundary values are no longer entire functions as the function would 
satisfy the moderate growth condition of (2.5). We re-state below a lemma 
which could also be found in [16], [8]. 

Lemma 2. Let k  be a non-zero positive integer ( ).N∈k  The 

distribution k−x  extends to the distribution ( )( )
( )

( ) ,11
1

01
−

δ
⋅−

−
−

k

k
k  where 

( )1
0
−δ k  is the ( )1−k -th derivative of the Dirac delta function at the origin. 

Proof. We note that the function k−z  for N∈k  satisfies the 
moderate growth condition (2.5) and therefore has a boundary value 

distribution ( ) .0 k−+ ix  Assume that ( ) ( ).0 R∞∈φ Cx  Let the distribution 

( ) >φ< α
+ xx ,  defined from the locally integrable function αx  be denoted 

by ( )( )xI φα  and given by 

( )( ) ( ) .
0

dxxxxI φ=φ α
∞

α ∫   (2.9) 

The distribution in (2.9) is analytic for ( ) 1−>αRe  but in our case we 

assume .k−→α  Applying the integration by parts formula once on the 
integral (2.9) gives 
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( )( ) ( ) ( )( ) .11
1 11

0 +α
φ′

−=φ′
+α

−=φ +α+α
∞

α ∫ xIdxxxxI  

Applying the integration by parts formula twice successively on the 
integral (2.9) yields 

( )( ) ( ) ( ) ( )( ).21
1

2 xIxI φ ′′
+α+α

=φ +αα  

Applying the same integration by parts formula k  times successively on 
the integral (2.9) gives 

( )( ) ( ) ( )( )
( ) ( ) ( ) .21

1
k

k
k

k

+α+α+α
φ−

=φ +α
α …

xIxI  (2.10) 

Note that the right hand side of Equation (2.10) is analytic except for 
simple poles at .,,2,1 k−−−=α …  

At ,, N∈−=α kk  the residue of the function ( )( )xI φα  is computed by 

the formula 

( )( )( ) ( ) ( )( ).lim, xIxIres φ+α=−φ α−→αα kk
k

 

Therefore 

( )( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ,21

1lim,
k

kk
k

k
k

k +α+α+α
φ−

⋅+α=−φ +α
−→αα …

xIxIres  

( )( )( ) ( ) ( ( )( ))
( ) ( ) ( )

( ( )( ))
( ) .!1

0
1211

1,
1

0
−

φ
=

−−−

φ−
=−φ

−

α kkk
k

k

k

kk

…
xIxIres  

Since ( ) ( ) ( )( )
( )( )
( ) ,!1

01:,
1

11
0 −

φ
⋅−=>φδ<

−
−−

k

k
kk x  then it means that 

( ) ( )( )
( )

( ) .as!11
1

01 k
k

k
k

k −→α
−

δ
⋅−→+α

−
−α

+x  
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Therefore 

( )( )
( )

( ) ( ) .as!11
1

01 k
kk

k
k

k −→α→
−+α

δ
⋅−− −

+

−
−α

+ xx  

 

The following theorem gives the relationship between rational function 
solutions and distributional solutions to an ODE. 

Theorem 2. If an ordinary differential equation (1.1) admits a 
rational function solution, then it also has a distributional solution of 
order m. 

Proof. See [16] and [19].  

3. Main Results 

Consider the locally Fuchsian differential equation (2.2) with the 
complex variable iyxz +=  for ., R∈yx  

Theorem 3. If P is a locally Fuchsian ordinary differential operator 
on the real line with constant coefficients as in (2.2), then there exists a 
distribution u with support on the positive halfline that can be extended to 
a distribution 0u  in the neighbourhood of 0 such that ( ) 00 =uP  and 

( ) ⊂∈ 0psup0 u  positive halfline. 

Proof. Let D be a small open disk of radius 0>δ  centered at the 
origin such that every complex function ( )zf  is holomorphic in D. By 

Theorem 1, in the simply connected set [ ),,0\ δ=∗ DD  for each pair 
( )j,ν  with ,10 −≤≤ νtj  there exists single valued branches of 
multivalued analytic functions of the form 

( ) ( ) .log,
j

j zzz ⋅=ρ α
α

ν
ν   (3.1) 

If ( ) ,0>αeR  then the defined distribution will be an entire function that 

does not satisfy moderate growth condition (2.5). However, if ( ) ,1−>αeR  

then we consider the following two cases: 
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(a) The case where there are distinct roots to the indicial equation 

that is the case when 0=j  in (3.1). Define α
+x  by 








≤

>
=

α
α
+

.0for,0

,0for,
:

x

xx
x  

The function α
+x  is locally integrable and depends on the parameter α  

therefore is a distribution for ( ) .1−>αeR  This distribution can be 

extended outside the set { }…,3,2,1 −−−=S  meromorphically on C  

since it is analytic elsewhere on C  except at the simple poles, see [7]. The 
points of the set S are considered as simple poles of the resulting 
distribution of the form obtained in Lemma 2, 

( )( )
( )

( ) ( ) .as!11
1

01 k
kk

k
k

k −→α→
−+α

δ
⋅−− −

+

−
−α

+ xx  (3.2) 

The distribution (3.2) can be normalized by an appropriate Gamma 
function that has the similar singularities ( )1+αΓ  to have, 

( )1+Γ
=

−
+

∗ k

kxu  that is entire on .C  This distribution ( )∗u  has support on 

the positive halfline and by Lemma 2 the distribution k−
+x  extends to the 

singular distribution ( )1
0
−δ kC  with support at the origin, where C is a 

constant depending on .k  By Theorems 1 and 2, the distribution ∗u  and 

the extension ( )1
0
−δ kC  of k−

+x  are solutions to ( ),uP  where 

( )1
0
−

∗ δ+= kCuu   for an appropriate constant C.  

(b) The case where there are repeated roots to the indicial equation 
that is 1≥j  in (3.1). This implies that the solutions contain powers of 

the logarithmic term. In this case, we define a regularization of each of 
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the locally integrable functions involved that is αz  and ( ) jzlog  thereby 

defining the following analytic densities: 








<

>
=

α
α
+

,0for,0

,0for,
:

x

xx
x  

and 

( )
( )









<

>
=+

0.for0,

,0for,ln
:log

x

xx
x

j
j  

With the possible extension that both of these analytic densities are zero 
at .0=x  The existence of distributions of this form and their 
compositions and products are proved in the series of papers [6], [4], and 
[5]. With derivatives taken in the distribution sense it yields that 

( ) ,0=uP  where ( ) .ln jxxu α
+=  

 

Example 3.1. Consider a Fuchsian operator at the origin P of the 

third order defined by 176: 2

2
2

3

3
3 +++= dx

dx
dx
dx

dx
dxP  and seek the 

distribution solution space with support on the positive halfline with 
possible extension to singular distributions with support at 0. The 
solution space of the operator P is as follows. 

We note that, 

.3and,, 2

2
2

3

3
33

2

2
22

dx
dx

dx
dx

dx
dxdx

dx
dx
dxdx

dx ++=∇+=∇=∇  

Using this quantities for ∇  and its powers in the operator P, we get the 
equation 

( ) .0133 23 =+∇+∇+∇ f   (3.3) 
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The indicial equation for (3.3) is 0133 23 =+++ rrr  and has one 
solution 1−=r  appearing three times. This then means the distribution 
solution space is given by 

( )







<

>
=








<

>
=

−

+
−

−

−
+

,0for,0

,0for,log
:log

,0for,0

,0for,
:

1
1

1
1

x

xxx
xx

x

xx
x  

and 

( )
( )








<

>
=

−

+
−

.0for,0

,0for,log
:log

21
21

x

xxx
xx  

(a) For 1−
+= xf  with the extension that it is a Dirac measure at 0        

(a consequence of Lemma 2) and ( ) ( ).RC∞∈ϕ x  The action of ∇  and its 

powers on f is given by 

( ) ( ) ( )( ) ( ) ,1
0

1
0

dxxxdxxxxf ϕ−=′ϕ−=ϕ∇ −
∞

−
∞

∫∫  

( ) ( ) (( ( )) ( )( ) ) ( ) ,1
0

21
0

2 dxxxdxxxxxxf ϕ=′ϕ−″ϕ=ϕ∇ −
∞

−
∞

∫∫  

and 

( ) ( ) ( ( ( )) ( ( )) ( )( ) ) ( ) ,3 1
0

231
0

3 dxxxdxxxxxxxxf ϕ−=′ϕ−″ϕ+′″ϕ−=ϕ∇ −
∞

−
∞

∫∫  

substituting this values of ( )f∇  and its powers shows that 1−
+= xf  is a 

solution in the distribution sense to (3.3) with support in the positive 

halfline. The extension of 1−
+= xf  as 1−→α  that is 0δ  is also a 

solution by Remark 3 below. 
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(b) For ( )+−= xxf log1  with the extension that it is zero at 0 and 

( ) ( ).RC∞∈ϕ x  The action of ∇  and its powers on f is given by 

( )( ) ( ) ( )( ) ( ) ( ) ( ) ,loglog 1
0

1
0

1
0

dxxxxdxxxdxxxxxf ϕ−ϕ=′ϕ−=ϕ∇ −
∞

−
∞

−
∞

∫∫∫  

( )( ) ( )(( ( )) ( )( ) ) ( ( ) ) ( ) ,2loglog 11
0

21
0

2 dxxxxxdxxxxxxxf ϕ−=′ϕ−″ϕ=ϕ∇ −−
∞

−
∞

∫∫  

and 

( ) ( ) ( ) ( ( ( )) ( ( )) ( )( ) )dxxxxxxxxxf ′ϕ−″ϕ+′″ϕ−=ϕ∇ −
∞

∫ 231
0

3 3log  

( ( ) ) ( ) ,3log 11
0

dxxxxx ϕ+−= −−
∞

∫  

substituting this values of ( )f∇  and its powers proves that f solves (3.3) 

in the distribution sense. 

(c) For ( )21 log xxf −
+=  with the extension that it is zero at 0 and 

( ) ( ).RC∞∈ϕ x  The action of ∇  and its powers on f is given by, 

( ) ( ) ( ) ( )( ) ( ) ( )dxxxxdxxxxxf ϕ=′ϕ−=ϕ∇ −
∞

−
∞

∫∫ log2log 1
0

21
0

 

( ) ( ) ,log 21
0

dxxxx ϕ− −
∞

∫  

with the second power of ∇  as 

( ) ( ) ( ) (( ( )) ( )( ) )dxxxxxxxf ′ϕ−″ϕ=ϕ∇ −
∞

∫ 21
0

2 log  

( ) ( ) ( ) ( ) ( ) ,loglog42 21
0

1
0

1
0

dxxxxdxxxxdxxx ϕ+ϕ−ϕ= −
∞

−
∞

−
∞

∫∫∫  

 



G. I. MIRUMBE and J. M. MANGO 114

and 

( ) ( ) ( ) ( ( ( )) ( ( )) ( )( ) )dxxxxxxxxxf ′ϕ−″ϕ+′″ϕ−=ϕ∇ −
∞

∫ 2321
0

3 3log  

( ) ( ) ( ) ( ) ( ) ,loglog66 21
0

1
0

1
0

dxxxxdxxxxdxxx ϕ−ϕ+ϕ−= −
∞

−
∞

−
∞

∫∫∫  

substituting this values of ( )f∇  and its powers in (3.3) shows that f is a 
distribution solution. 

Remark 3. (i) The equation 

( ) ,01
2

2
3

3
44

4 =+′+′′+′′′+ myyxayxayxayxa   (3.4) 

where Z∈m  and R∈x  and ,,,, 1234 aaaa  are constants is a special 
case of Theorem 3 above and solutions can be obtained as in this 
example. 

(ii) The Dirac measure 0δ=f  is a solution to (3.3) by Theorem 2 or 
Lemma 2.11 in [1]. 

3.1. The generalized solutions for a fourth order Euler ordinary 
differential equation 

Consider the fourth order Euler differential equation: 

( ) ( ) ( ) ( ) ( ) ,01
2

2
3

3
44

4 =+′+′′+′′′+ xmyxyxaxyxaxyxayxa   (3.5) 

where Z∈m  and .R∈x  Below we state a similar theorem to Theorem 
3.1 in [1] and prove it using our method. 

Theorem 4. The solutions to (3.5) depend on the values of m and is 
given by the following cases if :11234 ==== aaaa  

(a) If kkkk 495 234 −−−−=m  for ,N∈k  then there exists the 
distributional solutions of (3.5), which are singular distribution of the 
Dirac delta function and its derivatives. 

(b) If kkkk 495 234 +−+−=m  for ,N∈k  then there exists weak 
solutions. 
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Proof. (a) According to Theorem 3 and Theorem 2, such distributions 
come as extensions of α

+x  when .k−→α  Let k−= xy  and the derivatives 
exist as it is a locally integrable function. Differentiating ( )xy  and 
substituting into the special case of (3.5) where 234 aaa ==  11 == a  
gives 

( ) ( ) ( ) ( ) ( ) ( )[ ] .0121321 =+−++++−+++− mx kkkkkkkkkkk  

Since ,0≠−kx  then kkkk 495 234 −−−−=m  for N∈k  for a 
distribution solution to exist. 

(b) According to Theorem 3 such distributions exist when ( ) 1Re −>α  

that is let .k=α  Let kxy =  and all the derivatives exist. Differentiating 
( )xy  with respect to x and substituting in (3.5) gives 

( ) ( ) ( ) ( ) ( ) ( )( ) .0121321 =++−+−−+−−− mx kkkkkkkkkkk  

Since 0≠kx  for kkkk 495 234 +−+−=m  for ,N∈k  then there exists 

weak solutions of the form k+x  with support on the positive halfline. 

4. Conclusion 

In this paper, we proved the existence of generalized solutions with 
support on the positive halfline for a general constant coefficient locally 
Fuchsian differential equation (2.2) by constructing distributions with 
support on the positive halfline. We notice that (3.5) is a special case of 
(2.2). However, one can still use the Laplace transform method as in [1] 
to find conditions that m should satisfy for existence of generalized 
solutions to (3.5) that will in general include some logarithmic terms. 
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