• Login
    View Item 
    •   Mak IR Home
    • College of Natural Sciences (CoNAS)
    • School of Biosciences (Biosciences)
    • School of Biosciences (Biosciences) Collections
    • View Item
    •   Mak IR Home
    • College of Natural Sciences (CoNAS)
    • School of Biosciences (Biosciences)
    • School of Biosciences (Biosciences) Collections
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-time imaging of the intracellular glutathione redox potential in the malaria parasite plasmodium falciparum

    Thumbnail
    View/Open
    kasozi-mohring-conas-res.pdf (3.792Mb)
    Date
    2013-12
    Author
    Kasozi, Denis
    Mohring, Franziska
    Rahlfs, Stefan
    Meyer, Andreas J.
    Becker, Katja
    Metadata
    Show full item record
    Abstract
    In the malaria parasite Plasmodium falciparum, the cellular redox potential influences signaling events, antioxidant defense, and mechanisms of drug action and resistance. Until now, the real-time determination of the redox potential in malaria parasites has been limited because conventional approaches disrupt sub-cellular integrity. Using a glutathione biosensor comprising human glutaredoxin-1 linked to a redox-sensitive green fluorescent protein (hGrx1-roGFP2), we systematically characterized basal values and drug-induced changes in the cytosolic glutathione-dependent redox potential (EGSH) of drugsensitive (3D7) and resistant (Dd2) P. falciparum parasites. Via confocal microscopy, we demonstrated that hGrx1-roGFP2 rapidly detects EGSH changes induced by oxidative and nitrosative stress. The cytosolic basal EGSH of 3D7 and Dd2 were estimated to be -314.2±3.1 mV and -313.9±3.4 mV, respectively, which is indicative of a highly reducing compartment. We furthermore monitored short-, medium-, and long-term changes in EGSH after incubation with various redox-active compounds and antimalarial drugs. Interestingly, the redox cyclers methylene blue and pyocyanin rapidly changed the fluorescence ratio of hGrx1-roGFP2 in the cytosol of P. falciparum, which can, however, partially be explained by a direct interaction with the probe. In contrast, quinoline and artemisinin-based antimalarial drugs showed strong effects on the parasites’ EGSH after longer incubation times (24 h). As tested for various conditions, these effects were accompanied by a drop in total glutathione concentrations determined in parallel with alternative methods. Notably, the effects were generally more pronounced in the chloroquine-sensitive 3D7 strain than in the resistant Dd2 strain. Based on these results hGrx1-roGFP2 can be recommended as a reliable and specific biosensor for real-time spatiotemporal monitoring of the intracellular EGSH in P. falciparum. Applying this technique in further studies will enhance our understanding of redox regulation and mechanisms of drug action and resistance in Plasmodium and might also stimulate redox research in other pathogens.
    URI
    doi:10.1371/journal.ppat.1003782
    http://hdl.handle.net/10570/2127
    Collections
    • School of Biosciences (Biosciences) Collections

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of Mak IRCommunities & CollectionsTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy TypeThis CollectionTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV